Biocomposite foams consisting of microencapsulated phase change materials for enhanced climatic regulation with reduced carbon dioxide emissions in buildings

dc.authoridAYDOGMUS, ERCAN/0000-0002-1643-2487
dc.authoridSubasi, Serkan/0000-0001-7826-1348
dc.authoridGULER, Onur/0000-0002-9696-3287;
dc.contributor.authorGencel, Osman
dc.contributor.authorAydogmus, Ercan
dc.contributor.authorGuler, Onur
dc.contributor.authorUstaoglu, Abid
dc.contributor.authorSari, Ahmet
dc.contributor.authorHekimoglu, Gokhan
dc.contributor.authorSubasi, Serkan
dc.date.accessioned2025-10-11T20:48:35Z
dc.date.available2025-10-11T20:48:35Z
dc.date.issued2024
dc.departmentDüzce Üniversitesien_US
dc.description.abstractUsing polyurethane foam (PUF) matrix-based phase change material-enhanced composites is crucial for improving energy efficiency, enhancing thermal regulation, and reducing environmental impact in buildings. Integrating bio-components into PUF production and using these bio-composite foams (BPUFs) as the matrix offers environmentally friendly and structurally advanced solutions. Microencapsulated phase change material (MPCM) further enhances these foams, creating innovative, high-performance, eco-friendly composites for building applications. In this context, the biocomponent castor oil (CO) to be used in BPUF production has been modified with epoxy. BPUF-MPCM biocomposites with different compositions were produced using MPCM in the range of 0-90 wt% and modified castor oil (MCO) in the range of 0.75-7.50 wt% in BPUF production. The addition of 90 wt% MPCM content in BPUF-MPCM biocomposites has facilitated the attainment of a melting enthalpy value of 176.8 J/g (at 25.4 C-degrees) while providing a solidification enthalpy value of 175.7 J/g (at 20.8 C-degrees). The advancements in the microstructure of BPUF-MPCM composites contribute to physical improvements, such as a more homogeneous cell structure and enhancements in thermal transformation properties, thereby contributing to their thermoregulatory characteristics. BPUF-MPCM 90 wt% composites have achieved 100 % energy savings and zero CO2 emission values by varying material thicknesses across all climate conditions.en_US
dc.description.sponsorshipFibrobeton Inc.en_US
dc.description.sponsorshipThe support provided by Fibrobeton Inc. is acknowledged.en_US
dc.identifier.doi10.1016/j.conbuildmat.2024.138214
dc.identifier.issn0950-0618
dc.identifier.issn1879-0526
dc.identifier.scopus2-s2.0-85203421753en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.conbuildmat.2024.138214
dc.identifier.urihttps://hdl.handle.net/20.500.12684/22002
dc.identifier.volume448en_US
dc.identifier.wosWOS:001320979400001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofConstructionand Building Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_WOS_20250911
dc.subjectBiocompositeen_US
dc.subjectPolyurethane foamen_US
dc.subjectMicroencapsulated phase change materialen_US
dc.subjectrenewable energyen_US
dc.subjectEnergy and energy efficiencyen_US
dc.subjectCarbon emission reductionen_US
dc.titleBiocomposite foams consisting of microencapsulated phase change materials for enhanced climatic regulation with reduced carbon dioxide emissions in buildingsen_US
dc.typeArticleen_US

Dosyalar