A Generalization of Szasz-Mirakyan Operators Based on alpha Non-Negative Parameter

dc.authoridansari, khursheed J./0000-0003-4564-6211
dc.authorwosidansari, khursheed J./L-7415-2016
dc.contributor.authorAnsari, Khursheed J.
dc.contributor.authorUsta, Fuat
dc.date.accessioned2023-07-26T11:59:11Z
dc.date.available2023-07-26T11:59:11Z
dc.date.issued2022
dc.departmentDÜ, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe main purpose of this paper is to define a new family of Szasz-Mirakyan operators that depends on a non-negative parameter, say alpha. This new family of Szasz-Mirakyan operators is crucial in that it includes both the existing Szasz-Mirakyan operator and allows the construction of new operators for different values of alpha. Then, the convergence properties of the new operators with the aid of the Popoviciu-Bohman-Korovkin theorem-type property are presented. The Voronovskaja-type theorem and rate of convergence are provided in a detailed proof. Furthermore, with the help of the classical modulus of continuity, we deduce an upper bound for the error of the new operator. In addition to these, in order to show that the convex or monotonic functions produced convex or monotonic operators, we obtain shape-preserving properties of the new family of Szasz-Mirakyan operators. The symmetry of the properties of the classical Szasz-Mirakyan operator and of the properties of the new sequence is investigated. Moreover, we compare this operator with its classical correspondence to show that the new one has superior properties. Finally, some numerical illustrative examples are presented to strengthen our theoretical results.en_US
dc.description.sponsorshipDeanship of Scientific Research at King Khalid University [R.G.P.2/210/43]en_US
dc.description.sponsorshipThe authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant number R.G.P.2/210/43. The authors are grateful to the responsible Editor and the anonymous reviewers for their valuable comments and suggestions, which have greatly improved this paper.en_US
dc.identifier.doi10.3390/sym14081596
dc.identifier.issn2073-8994
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85137361549en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.3390/sym14081596
dc.identifier.urihttps://hdl.handle.net/20.500.12684/13654
dc.identifier.volume14en_US
dc.identifier.wosWOS:000845543000001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorUsta, Fuat
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofSymmetry-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmz$2023V1Guncelleme$en_US
dc.subjectSzasz-Mirakyan Operators; Modulus Of Continuity; Voronovskaja Theorem; Korovkin-Type Theorem; Shape-Preserving Approximationen_US
dc.subjectApproximationen_US
dc.titleA Generalization of Szasz-Mirakyan Operators Based on alpha Non-Negative Parameteren_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ä°sim:
13654.pdf
Boyut:
359.99 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text