Generalized AB-Fractional Operator Inclusions of Hermite-Hadamard's Type via Fractional Integration
dc.authorid | Bin-Mohsin, Bandar/0000-0002-2160-4159 | en_US |
dc.authorid | Awan, Muhammad Uzair/0000-0002-1019-9485 | en_US |
dc.authorid | Noor, Muhammad/0000-0001-6105-2435 | en_US |
dc.authorid | Javed, Muhammad Zakria/0000-0001-5212-6252 | en_US |
dc.authorid | Budak, Huseyin/0000-0001-8843-955X | en_US |
dc.authorid | Mihai, Marcela/0000-0002-4864-8899 | en_US |
dc.authorscopusid | 53879358800 | en_US |
dc.authorscopusid | 56018634500 | en_US |
dc.authorscopusid | 57221781447 | en_US |
dc.authorscopusid | 55582438900 | en_US |
dc.authorscopusid | 57038541500 | en_US |
dc.authorscopusid | 55177773000 | en_US |
dc.authorscopusid | 7102422868 | en_US |
dc.authorwosid | BUDAK, Hüseyin/CAA-1604-2022 | en_US |
dc.authorwosid | Bin-Mohsin, Bandar/C-7273-2018 | en_US |
dc.authorwosid | Awan, Muhammad Uzair/O-2382-2015 | en_US |
dc.authorwosid | Khan, Awais/JHT-9826-2023 | en_US |
dc.authorwosid | Noor, Muhammad/AAF-1238-2019 | en_US |
dc.authorwosid | Javed, Muhammad Zakria/KXR-4163-2024 | en_US |
dc.contributor.author | Bin-Mohsin, Bandar | |
dc.contributor.author | Awan, Muhammad Uzair | |
dc.contributor.author | Javed, Muhammad Zakria | |
dc.contributor.author | Khan, Awais Gul | |
dc.contributor.author | Budak, Huseyin | |
dc.contributor.author | Mihai, Marcela V. | |
dc.contributor.author | Noor, Muhammad Aslam | |
dc.date.accessioned | 2024-08-23T16:03:36Z | |
dc.date.available | 2024-08-23T16:03:36Z | |
dc.date.issued | 2023 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | The aim of this research is to explore fractional integral inequalities that involve interval-valued preinvex functions. Initially, a new set of fractional operators is introduced that uses the extended generalized Mittag-Leffler function E-mu,alpha,l(gamma,delta, k,c) (tau; p) as a kernel in the interval domain. Additionally, a new form of Atangana-Baleanu operator is defined using the same kernel, which unifies multiple existing integral operators. By varying the parameters in E-mu,alpha,l(gamma,delta, k,c)(tau; p), several new fractional operators are obtained. This study then utilizes the generalized AB integral operators and the preinvex interval-valued property of functions to establish new Hermite-Hadamard, Pachapatte, and Hermite-Hadamard-Fejer inequalities. The results are supported by numerical examples, graphical illustrations, and special cases. | en_US |
dc.description.sponsorship | King Saud University, Riyadh, Saudi Arabia [RSP2023R158] | en_US |
dc.description.sponsorship | This Research is supported by Researchers Supporting Project number (RSP2023R158), King Saud University, Riyadh, Saudi Arabia. | en_US |
dc.identifier.doi | 10.3390/sym15051012 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85160571251 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.3390/sym15051012 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/13803 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000997817600001 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.ispartof | Symmetry-Basel | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hermite-Hadamard inequality | en_US |
dc.subject | pachpatte inequality | en_US |
dc.subject | Mittag-Leffler | en_US |
dc.subject | fractional integrals | en_US |
dc.subject | preinvex function | en_US |
dc.subject | Fejer | en_US |
dc.subject | Convex-Functions | en_US |
dc.subject | Inequalities | en_US |
dc.title | Generalized AB-Fractional Operator Inclusions of Hermite-Hadamard's Type via Fractional Integration | en_US |
dc.type | Article | en_US |