Convex and Starlike Functions Defined on the Subclass of the Class of the Univalent Functions S with Order 2(- r)

dc.contributor.authorYıldız, İsmet
dc.contributor.authorMert, Oya
dc.contributor.authorAkyar, Alaattin
dc.date.accessioned2023-07-26T11:54:52Z
dc.date.available2023-07-26T11:54:52Z
dc.date.issued2022
dc.departmentDÜ, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, some conditions have been improved so that the function g(z) is defined as g(z) = 1+ Sigma(infinity)(k >= 2) alpha n+k(zn+k), which is analytic in unit disk U, can be in more specific subclasses of the S class, which is the most fundamental type of univalent function. It is analyzed some characteristics of starlike and convex functions of order 2(-r).en_US
dc.identifier.doi10.22130/scma.2022.541789.1010
dc.identifier.endpage116en_US
dc.identifier.issn2423-3900
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85142850972en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage109en_US
dc.identifier.urihttps://doi.org/10.22130/scma.2022.541789.1010
dc.identifier.urihttps://hdl.handle.net/20.500.12684/12943
dc.identifier.volume19en_US
dc.identifier.wosWOS:000926122000008en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorAkyar, Alaattin
dc.language.isoenen_US
dc.publisherUniv Maraghehen_US
dc.relation.ispartofSahand Communications In Mathematical Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz$2023V1Guncelleme$en_US
dc.subjectAnalytic Function; Convex Function; Starlike Function; Univalent Functionen_US
dc.titleConvex and Starlike Functions Defined on the Subclass of the Class of the Univalent Functions S with Order 2(- r)en_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
12943.pdf
Boyut:
107.01 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text