Real-time monitoring and measurement of energy characteristics in sustainable machining of titanium alloys

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The development of cutting-edge monitoring technologies such as embedded devices and sensors has become necessary to ensure an industrial intelligence in modern manufacturing by recording machine, process, tool, and energy consumption conditions. Similarly, machine learning based real time systems are popular in the context of Industry 4.0 and are generally used for predicting energy needs and improving energy utilization efficiency and performance. In addition, sustainable and energy-efficient machining technologies that can reduce energy consumption and associated negative environmental effects have been the latest topic of much study in recent years. Concerning this regard, the present work firstly deals with the real time monitoring and measurement of energy characteristics while machining titanium alloys under dry, minimum quantity lubrication (MQL), liquid nitrogen (LN2) and hybrid (MQL + LN2) conditions. The energy characteristics at different stages of machine tools were monitored with the help of a high end energy analyser. Then, the energy signals from each stage of machining operation were predicted and classified with the help of different machine learning (ML) models. The experimental results showed that MQL, LN2, and hybrid conditions decreased the total energy consumption by averagely 2.6 %, 17.0 %, and 16.3 %, respectively, compared to dry condition. The ML results demonstrated that the accuracy of the random forest (RF) approach obtained higher efficacy with 96.3 % in all four conditions. In addition, it has been noticed that the hybrid cooling conditions are helpful in reducing the energy consumption values at different stages.

Açıklama

Anahtar Kelimeler

Energy, Measurement, Sensors, Machine learning, Real time monitoring, Tool Wear, Consumption, Optimization, Dry

Kaynak

Measurement

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

224

Sayı

Künye