Dalgacık dönüşümü ile EKG sinyallerinin işlenmesi ve özellik çıkarımı

Yükleniyor...
Küçük Resim

Tarih

2008

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Düzce Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Bu çalışmada Normal, Rbbb, Lbbb ve Pace olmak üzere dört grup EKG datası incelenmiştir. Dataların dönüşüm işlemlerinde Dalgacık ve Fourier dönüşümleri kullanılmıştır. Bilgilerin daha az veri ile temsil edilmesiyle sınıflandırma işlemleri çok kısa sürede yapılabilir hale gelmiştir.Dalgacık Dönüşümü ile ham datalardan elde edilmiş özellik vektörleri ortalama %72 gibi bir başarımla sınıflandırılmışlardır. Fourier Dönüşümleri ile de başarılı sonuçlar elde edilmiş, fakat özellik vektörü veri sayısı dalgacık dönüşümüne göre üç kat daha fazla olduğundan hesap yükü fazlalaşmış ve sınıflandırma süresi yaklaşık üç kat artmıştır.
In this study, Normal, Rbbb, Lbbb and Pace ECG data was examined. Wavelet and Fourier Transform has been used for Feature Extraction. By this way, classification has been realised the shortest time and the less data size.Feature Vectors extracted from original signals with Wavelet Transform, have been classified 72 % accuracy. It has also taken successfully results with FFT. But Feature Vector size has been approximately three times bigger than Wavelet Transform and the classification time has increased approximately three times.

Açıklama

YÖK Tez No: 237409

Anahtar Kelimeler

Teknik Eğitim, Technical Education, Elektrokardiyografi, Electrocardiography, Dalgacık Dönüşümü, Sinyal Analizi, EKG, Özellik Çıkarımı, Wavelet Transform, Signal Analysis, ECG, Feature Extraction

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Koleksiyon