Exergetic, economic and environmental analysis of temperature controlled solar air heater system
Yükleniyor...
Dosyalar
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Ltd
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Solar energy systems are widely utilized to obtain environmentally friendly and sustainable electrical and thermal energy that able to be used in many applications. Temperature-controlled solar air heater (SAH) system with a zigzag finned plate and flat plate was designed, manufactured, and tested experimentally in this study. It was determined that the set temperature was 15% higher than the flat plate SAH outlet temperature. The most important cause for this increase, the air is exposed preheating in the first collector. As the heat transfer surface area raised thanks to the zigzag fins in the second collector, the temperature of the air increases even more. SAH system's energy efficiency was found to be 71.15% on average. SAH system's maximum exergy efficiency was determined as 3.7%. The SAH system's average exergy destruction is calculated to be 651.58 W on average. According to the enviroeconomic analysis of the system, hourly CO2 mitigation was found to be 1.04 kg CO2/h and the environmental cost was 1.508 ¢/h. The energy cost was calculated as 0.0834 $/kWh, while the exergoeconomic parameter was calculated as 0.1931 kWh/$. In addition, the energy payback period was determined as 1.35 years, while the exergy payback period was determined as 45.9 years. © 2021
Açıklama
Anahtar Kelimeler
Energy analysis, Exergoeconomic analysis, Exergy analysis, Solar energy, Thermoeconomic analysis
Kaynak
Cleaner Engineering and Technology
WoS Q Değeri
Scopus Q Değeri
Q1
Cilt
6