Some results on 2-distance coloring of planar graphs with girth five

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

A vertex coloring of a graph G is called a 2-distance coloring if any two vertices at distance at most 2 from each other receive different colors. Suppose that G is a planar graph with girth 5 and maximum degree Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}. We prove that G admits a 2-distance Delta+7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta +7$$\end{document} coloring, which improves the result of Dong and Lin (J Comb Optim 32(2):645-655, 2016). Moreover, we prove that G admits a 2-distance Delta+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta +6$$\end{document} coloring when Delta >= 10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \ge 10$$\end{document}.

Açıklama

Anahtar Kelimeler

Coloring, 2-distance coloring, Girth, Planar graph, Square

Kaynak

Journal of Combinatorial Optimization

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

47

Sayı

4

Künye