High order algebraic splitting for magnetohydrodynamics simulation
Yükleniyor...
Dosyalar
Tarih
2017
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Bv
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This paper proposes, analyzes and tests high order algebraic splitting methods for magnetohydrodynamic (MHD) flows. The main idea is to apply, at each time step, Yosida-type algebraic splitting to a block saddle point problem that arises from a particular incremental formulation of MHD. By doing so, we dramatically reduce the complexity of the nonsymmetric block Schur complement by decoupling it into two Stokes-type Schur complements, each of which is symmetric positive definite and also is the same at each time step. We prove the splitting is 0(Delta t(3)) accurate, and if used together with (block-)pressure correction, is fourth order. A full analysis of the solver is given, both as a linear algebraic approximation, but also in a finite element context that uses the natural spatial norms. Numerical tests are given to illustrate the theory and show the effectiveness of the method. (C) 2017 Elsevier B.V. All rights reserved.
Açıklama
WOS: 000400878000009
Anahtar Kelimeler
Magnetohydrodynamics, Algebraic splitting, Yosida splitting
Kaynak
Journal Of Computational And Applied Mathematics
WoS Q Değeri
Q1
Scopus Q Değeri
Q2
Cilt
321