Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems
dc.authorid | Chatzinotas, Symeon/0000-0001-5122-0001 | |
dc.authorid | Elbir, Ahmet M./0000-0003-4060-3781 | |
dc.authorid | Papazafeiropoulos, Anastasios/0000-0003-1841-6461 | |
dc.authorid | Senior, John/0000-0002-4881-560X | |
dc.authorid | Kourtessis, Pandelis/0000-0003-3392-670X | |
dc.authorwosid | Chatzinotas, Symeon/D-4191-2015 | |
dc.authorwosid | Elbir, Ahmet M./X-3731-2019 | |
dc.contributor.author | Elbir, Ahmet M. | |
dc.contributor.author | Papazafeiropoulos, Anastasios | |
dc.contributor.author | Kourtessis, Pandelis | |
dc.contributor.author | Chatzinotas, Symeon | |
dc.date.accessioned | 2021-12-01T18:49:19Z | |
dc.date.available | 2021-12-01T18:49:19Z | |
dc.date.issued | 2020 | |
dc.department | [Belirlenecek] | en_US |
dc.description.abstract | This letter presents the first work introducing a deep learning (DL) framework for channel estimation in large intelligent surface (LIS) assisted massive MIMO (multiple-input multiple-output) systems. A twin convolutional neural network (CNN) architecture is designed and it is fed with the received pilot signals to estimate both direct and cascaded channels. In a multi-user scenario, each user has access to the CNN to estimate its own channel. The performance of the proposed DL approach is evaluated and compared with state-of-the-art DL-based techniques and its superior performance is demonstrated. | en_US |
dc.description.sponsorship | ERC Project AGNOSTIC | en_US |
dc.description.sponsorship | This work was supported in part by the ERC Project AGNOSTIC. | en_US |
dc.identifier.doi | 10.1109/LWC.2020.2993699 | |
dc.identifier.endpage | 1451 | en_US |
dc.identifier.issn | 2162-2337 | |
dc.identifier.issn | 2162-2345 | |
dc.identifier.issue | 9 | en_US |
dc.identifier.scopus | 2-s2.0-85091179272 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 1447 | en_US |
dc.identifier.uri | https://doi.org/10.1109/LWC.2020.2993699 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/10703 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:000569062000024 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Wireless Communications Letters | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Channel estimation | en_US |
dc.subject | MIMO communication | en_US |
dc.subject | Complexity theory | en_US |
dc.subject | Training | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Surface waves | en_US |
dc.subject | Array signal processing | en_US |
dc.subject | Deep learning | en_US |
dc.subject | channel estimation | en_US |
dc.subject | large intelligent surfaces | en_US |
dc.subject | massive MIMO | en_US |
dc.subject | Antenna Selection | en_US |
dc.subject | Design | en_US |
dc.title | Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 10703.pdf
- Boyut:
- 565.68 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text