On Composition Operators of Fibonacci Matrix and Applications of Hausdorff Measure of Noncompactness
Yükleniyor...
Dosyalar
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Soc Paranaense Matematica
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The aim of the paper is introduced the composition of the two infinite matrices Lambda = (lambda(nk)) and (F) over cap = (f(nk)). Further, we determine the alpha-, beta-, gamma-duals of new spaces and also construct the basis for the space l(p)(lambda)((F) over cap). Additionally, we characterize some matrix classes on the spaces l(infinity)(lambda) ((F) over cap) and l(p)(lambda) ((F) over cap). We also investigate some geometric properties concerning Banach- Saks type p. Finally we characterize the subclasses K(X : Y) of compact operators by applying the Hausdorff measure of noncompactness, where X is an element of{l(infinity)(lambda) ((F) over cap), l(p)(lambda) ((F) over cap)} and Y is an element of{c(0), c, l(infinity), l(1), b(v)}, and 1 <= p < infinity.
Açıklama
Anahtar Kelimeler
Fibonacci Numbers; Matrix Transformations; Hausdorff Measure Of Noncompactness; Compact Operator; Banach-Saks Type P, Difference Sequence-Spaces; Compact-Operators; Convergent; Transformations; Norlund; Null
Kaynak
Boletim Sociedade Paranaense De Matematica
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
40