On Composition Operators of Fibonacci Matrix and Applications of Hausdorff Measure of Noncompactness

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Soc Paranaense Matematica

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The aim of the paper is introduced the composition of the two infinite matrices Lambda = (lambda(nk)) and (F) over cap = (f(nk)). Further, we determine the alpha-, beta-, gamma-duals of new spaces and also construct the basis for the space l(p)(lambda)((F) over cap). Additionally, we characterize some matrix classes on the spaces l(infinity)(lambda) ((F) over cap) and l(p)(lambda) ((F) over cap). We also investigate some geometric properties concerning Banach- Saks type p. Finally we characterize the subclasses K(X : Y) of compact operators by applying the Hausdorff measure of noncompactness, where X is an element of{l(infinity)(lambda) ((F) over cap), l(p)(lambda) ((F) over cap)} and Y is an element of{c(0), c, l(infinity), l(1), b(v)}, and 1 <= p < infinity.

Açıklama

Anahtar Kelimeler

Fibonacci Numbers; Matrix Transformations; Hausdorff Measure Of Noncompactness; Compact Operator; Banach-Saks Type P, Difference Sequence-Spaces; Compact-Operators; Convergent; Transformations; Norlund; Null

Kaynak

Boletim Sociedade Paranaense De Matematica

WoS Q Değeri

N/A

Scopus Q Değeri

Q3

Cilt

40

Sayı

Künye