GENERAL ((k, p ) , ψ)-HILFER FRACTIONAL INTEGRALS
| dc.authorid | Benaissa, Bouharket/0000-0002-1195-6169; | |
| dc.contributor.author | Benaissa, Bouharket | |
| dc.contributor.author | Budak, Huseyin | |
| dc.date.accessioned | 2025-10-11T20:47:58Z | |
| dc.date.available | 2025-10-11T20:47:58Z | |
| dc.date.issued | 2024 | |
| dc.department | Düzce Üniversitesi | en_US |
| dc.description.abstract | The main motivation of this study is to establish a general version of the RiemannLiouville fractional integrals with two exponential parameters k and p called ((k, p),psi)-Hilfer fractional integrals which is determined over the k-gamma function. We first prove that these operators are well-defined, continuous and have semi-group property. Then, particularly, we present the harmonic, geometric and arithmetic (k, p), psi-Hilfer fractional integrals. Moreover, some special cases relating to general ((k, p),psi)-Riemann-Liouville fraction integrals are given. | en_US |
| dc.identifier.doi | 10.18514/MMN.2024.4594 | |
| dc.identifier.issn | 1787-2405 | |
| dc.identifier.issn | 1787-2413 | |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.scopus | 2-s2.0-85212327308 | en_US |
| dc.identifier.scopusquality | Q2 | en_US |
| dc.identifier.uri | https://doi.org/10.18514/MMN.2024.4594 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12684/21666 | |
| dc.identifier.volume | 25 | en_US |
| dc.identifier.wos | WOS:001402251100007 | en_US |
| dc.identifier.wosquality | Q2 | en_US |
| dc.indekslendigikaynak | Web of Science | en_US |
| dc.indekslendigikaynak | Scopus | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Univ Miskolc Inst Math | en_US |
| dc.relation.ispartof | Miskolc Mathematical Notes | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.snmz | KA_WOS_20250911 | |
| dc.subject | ((k, p ) , psi)-Hilfer fractional | en_US |
| dc.subject | k-gamma function | en_US |
| dc.subject | Riemann-Liouville operator | en_US |
| dc.subject | Hadam- ard operator | en_US |
| dc.subject | Katugampola operator | en_US |
| dc.title | GENERAL ((k, p ) , ψ)-HILFER FRACTIONAL INTEGRALS | en_US |
| dc.type | Article | en_US |












