Application of modern approaches to the synthesis of biohydrogen from organic waste
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Pergamon-Elsevier Science Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Hydrogen production with the use of biological processes and renewable feedstock may be considered an economical and sustainable alternative fuel. The high calorific value and zero emission in the production of biohydrogen make it the best possible source for energy security and environmental sustainability. Solar energy, microorganisms, and feedstock such as organic waste and lignocellulosic biomasses of different feedstock are the only requirements of biohydrogen production along with specific environmental conditions for the growth of microorganisms. Hydrogen is also named as 'fuel of the future'. This study presents different pathways of biohydrogen production. Because of breakthroughs in R & D, biohydrogen has been elevated to the status of a viable biofuel for the future. However, significant problems such as the cost of preprocessing, oxygen-hypersensitive enzymes, a lack of uniform light illumination for photobiological processes, and other expenses requiring intensification process limits are faced throughout the biohydrogen production process. Despite concerns regarding nanoparticle (NP) toxicity at higher concentrations, proper NP concentrations may improve hydrogen production dramatically by dissolving the substrates for bacterial hydrogen transformation. The data-driven Machine Learning (ML) model allows for quick response approximation for fermentative biohydrogen production while accounting for non-linear interactions between input variables. Scaling up biohydrogen production for future commercial-scale applications requires combining cost-benefit evaluations and life cycle effects with machine learning. & COPY; 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Açıklama
Anahtar Kelimeler
Biohydrogen production, Hydrogen generation, Machine learning, Microbial electrolysis cell, Nanotechnology, Fermentative Hydrogen-Production, Microbial Electrolysis Cells, Oil Mill Effluent, Anaerobic Mixed Microflora, Photo-Fermentation, Dark Fermentation, Photosynthetic Bacteria, Pretreatment Methods, Batch Fermentation, Vegetable Wastes
Kaynak
International Journal of Hydrogen Energy
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
48
Sayı
55