Convex Functions on Discrete Time Domains
Yükleniyor...
Dosyalar
Tarih
2016
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Canadian Mathematical Soc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we introduce the definition of a convex real valued function f defined on the set of integers, Z. We prove that f is convex on Z if and only if Delta(2)f >= 0 on Z. As a first application of this new concept, we state and prove discrete Hermite-Hadamard inequality using the basics of discrete calculus (i.e., the calculus on Z). Second, we state and prove the discrete fractional Hermite-Hadamard inequality using the basics of discrete fractional calculus. We close the paper by defining the convexity of a real valued function on any time scale.
Açıklama
WOS: 000376215100001
Anahtar Kelimeler
discrete calculus, discrete fractional calculus, convex functions, discrete Hermite-Hadamard inequality
Kaynak
Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
59
Sayı
2