Convex Functions on Discrete Time Domains

Yükleniyor...
Küçük Resim

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Canadian Mathematical Soc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we introduce the definition of a convex real valued function f defined on the set of integers, Z. We prove that f is convex on Z if and only if Delta(2)f >= 0 on Z. As a first application of this new concept, we state and prove discrete Hermite-Hadamard inequality using the basics of discrete calculus (i.e., the calculus on Z). Second, we state and prove the discrete fractional Hermite-Hadamard inequality using the basics of discrete fractional calculus. We close the paper by defining the convexity of a real valued function on any time scale.

Açıklama

WOS: 000376215100001

Anahtar Kelimeler

discrete calculus, discrete fractional calculus, convex functions, discrete Hermite-Hadamard inequality

Kaynak

Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

59

Sayı

2

Künye