Fractional Hermite-Hadamard inequality and error estimates for Simpson's formula through convexity with respect to a pair of functions
dc.authorid | Fe?kan, Michal/0000-0002-7385-6737 | en_US |
dc.authorscopusid | 57199279462 | en_US |
dc.authorscopusid | 47562314400 | en_US |
dc.authorscopusid | 57038541500 | en_US |
dc.authorscopusid | 36626202600 | en_US |
dc.authorscopusid | 7004253438 | en_US |
dc.authorwosid | BUDAK, Hüseyin/CAA-1604-2022 | en_US |
dc.authorwosid | Fe?kan, Michal/T-4397-2018 | en_US |
dc.contributor.author | Ali, Muhammad Aamir | |
dc.contributor.author | Soontharanon, Jarunee | |
dc.contributor.author | Budak, Huseyin | |
dc.contributor.author | Sitthiwirattham, Thanin | |
dc.contributor.author | Feckan, Michal | |
dc.date.accessioned | 2024-08-23T16:03:51Z | |
dc.date.available | 2024-08-23T16:03:51Z | |
dc.date.issued | 2023 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | In this article, we establish two new and different versions of fractional HermiteHadamard type inequality for the convex functions with respect to a pair of functions. Moreover, we establish a new Simpson's type inequalities for differentiable convex functions with respect to a pair of functions. We also prove two more Simpson's type inequalities for differentiable convex functions with respect to a pair of functions using the power mean and Ho & BULL;lder's inequalities. It is also shown that the newly established inequalities are the extension of some existing results. Finally, we add some mathematical examples and their graphs to show the validity of newly established results. | en_US |
dc.description.sponsorship | National Science, Research, and Innovation Fund (NSRF); King Mongkut's University of Technology North Bangkok [KMUTNB-FF-65-49]; Slovak Research and Development Agency [APVV-18-0308]; Slovak Grant Agency VEGA [1/0358/20, 2/0127/20] | en_US |
dc.description.sponsorship | This research was funded by National Science, Research, and Innovation Fund (NSRF) , and King Mongkut's University of Technology North Bangkok with Contract no. KMUTNB-FF-65-49, the Slovak Research and Development Agency under contract No. APVV-18-0308, and by the Slovak Grant Agency VEGA No. 1/0358/20 and No. 2/0127/20. | en_US |
dc.identifier.doi | 10.18514/MMN.2023.4214 | |
dc.identifier.endpage | 568 | en_US |
dc.identifier.issn | 1787-2405 | |
dc.identifier.issn | 1787-2413 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85167911549 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 553 | en_US |
dc.identifier.uri | https://doi.org/10.18514/MMN.2023.4214 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/13950 | |
dc.identifier.volume | 24 | en_US |
dc.identifier.wos | WOS:001043687500003 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Univ Miskolc Inst Math | en_US |
dc.relation.ispartof | Miskolc Mathematical Notes | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hermite-Hadamard inequality | en_US |
dc.subject | Simpson's inequality | en_US |
dc.subject | g | en_US |
dc.subject | h)-convex functions | en_US |
dc.title | Fractional Hermite-Hadamard inequality and error estimates for Simpson's formula through convexity with respect to a pair of functions | en_US |
dc.type | Article | en_US |