Fractional Hermite-Hadamard inequality and error estimates for Simpson's formula through convexity with respect to a pair of functions

dc.authoridFe?kan, Michal/0000-0002-7385-6737en_US
dc.authorscopusid57199279462en_US
dc.authorscopusid47562314400en_US
dc.authorscopusid57038541500en_US
dc.authorscopusid36626202600en_US
dc.authorscopusid7004253438en_US
dc.authorwosidBUDAK, Hüseyin/CAA-1604-2022en_US
dc.authorwosidFe?kan, Michal/T-4397-2018en_US
dc.contributor.authorAli, Muhammad Aamir
dc.contributor.authorSoontharanon, Jarunee
dc.contributor.authorBudak, Huseyin
dc.contributor.authorSitthiwirattham, Thanin
dc.contributor.authorFeckan, Michal
dc.date.accessioned2024-08-23T16:03:51Z
dc.date.available2024-08-23T16:03:51Z
dc.date.issued2023en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractIn this article, we establish two new and different versions of fractional HermiteHadamard type inequality for the convex functions with respect to a pair of functions. Moreover, we establish a new Simpson's type inequalities for differentiable convex functions with respect to a pair of functions. We also prove two more Simpson's type inequalities for differentiable convex functions with respect to a pair of functions using the power mean and Ho & BULL;lder's inequalities. It is also shown that the newly established inequalities are the extension of some existing results. Finally, we add some mathematical examples and their graphs to show the validity of newly established results.en_US
dc.description.sponsorshipNational Science, Research, and Innovation Fund (NSRF); King Mongkut's University of Technology North Bangkok [KMUTNB-FF-65-49]; Slovak Research and Development Agency [APVV-18-0308]; Slovak Grant Agency VEGA [1/0358/20, 2/0127/20]en_US
dc.description.sponsorshipThis research was funded by National Science, Research, and Innovation Fund (NSRF) , and King Mongkut's University of Technology North Bangkok with Contract no. KMUTNB-FF-65-49, the Slovak Research and Development Agency under contract No. APVV-18-0308, and by the Slovak Grant Agency VEGA No. 1/0358/20 and No. 2/0127/20.en_US
dc.identifier.doi10.18514/MMN.2023.4214
dc.identifier.endpage568en_US
dc.identifier.issn1787-2405
dc.identifier.issn1787-2413
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85167911549en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage553en_US
dc.identifier.urihttps://doi.org/10.18514/MMN.2023.4214
dc.identifier.urihttps://hdl.handle.net/20.500.12684/13950
dc.identifier.volume24en_US
dc.identifier.wosWOS:001043687500003en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherUniv Miskolc Inst Mathen_US
dc.relation.ispartofMiskolc Mathematical Notesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHermite-Hadamard inequalityen_US
dc.subjectSimpson's inequalityen_US
dc.subjectgen_US
dc.subjecth)-convex functionsen_US
dc.titleFractional Hermite-Hadamard inequality and error estimates for Simpson's formula through convexity with respect to a pair of functionsen_US
dc.typeArticleen_US

Dosyalar