Simpson's quadrature formula for third differentiable and s-convex functions

dc.authoridBenaissa, Bouharket/0000-0002-1195-6169
dc.authoridnoureddine, azzouz/0000-0003-0658-2438;
dc.contributor.authorBenaissa, Bouharket
dc.contributor.authorAzzouz, Noureddine
dc.contributor.authorSarikaya, Mehmet Zeki
dc.date.accessioned2025-10-11T20:48:03Z
dc.date.available2025-10-11T20:48:03Z
dc.date.issued2024
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThis study establishes Newton-type inequalities for third differentiable and s-convex functions that use the Riemann integral. New Newton-type inequalities are also introduced using a summation parameter p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\geq 1$\end{document} for various convexity cases.en_US
dc.identifier.doi10.1186/s13661-024-01952-1
dc.identifier.issn1687-2770
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85207804541en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1186/s13661-024-01952-1
dc.identifier.urihttps://hdl.handle.net/20.500.12684/21730
dc.identifier.volume2024en_US
dc.identifier.wosWOS:001344807400001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofBoundary Value Problemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_WOS_20250911
dc.subjects-convex functionen_US
dc.subjectNewton inequalityen_US
dc.subjectH & ouml;lder inequalityen_US
dc.subjectRiemann integralen_US
dc.titleSimpson's quadrature formula for third differentiable and s-convex functionsen_US
dc.typeArticleen_US

Dosyalar