New Study on the Quantum Midpoint-Type Inequalities for Twice q-Differentiable Functions via the Jensen-Mercer Inequality
dc.authorid | Butt, Saad Ihsan/0000-0001-7192-8269 | en_US |
dc.authorid | Umar, Muhammad/0000-0001-9911-1111 | en_US |
dc.authorid | Budak, Huseyin/0000-0001-8843-955X | en_US |
dc.authorscopusid | 55253111500 | en_US |
dc.authorscopusid | 57203870179 | en_US |
dc.authorscopusid | 57038541500 | en_US |
dc.authorwosid | Butt, Saad Ihsan/ITT-3431-2023 | en_US |
dc.authorwosid | BUDAK, Hüseyin/CAA-1604-2022 | en_US |
dc.contributor.author | Butt, Saad Ihsan | |
dc.contributor.author | Umar, Muhammad | |
dc.contributor.author | Budak, Hüseyin | |
dc.date.accessioned | 2024-08-23T16:03:36Z | |
dc.date.available | 2024-08-23T16:03:36Z | |
dc.date.issued | 2023 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | The objective of this study is to identify novel quantum midpoint-type inequalities for twice q-differentiable functions by utilizing Mercer's approach. We introduce a new auxiliary variant of the quantum Mercer midpoint-type identity related to twice q-differentiable functions. By applying the theory of convex functions to this identity, we introduce new bounds using well-known inequalities, such as Holder's inequality and power-mean inequality. We provide explicit examples along with graphical demonstrations. The findings of this study explain previous studies on midpoint-type inequalities. Analytic inequalities of this type, as well as related strategies, have applications in various fields where symmetry plays an important role. | en_US |
dc.identifier.doi | 10.3390/sym15051038 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85160545213 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.3390/sym15051038 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/13802 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000997794300001 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.ispartof | Symmetry-Basel | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | quantum calculus | en_US |
dc.subject | convex functions | en_US |
dc.subject | midpoint inequalities | en_US |
dc.subject | Jensen-Mercer inequality | en_US |
dc.subject | Refinements | en_US |
dc.subject | Convex | en_US |
dc.title | New Study on the Quantum Midpoint-Type Inequalities for Twice q-Differentiable Functions via the Jensen-Mercer Inequality | en_US |
dc.type | Article | en_US |