Investigation of the effect of AWJ drilling parameters for delamination factor and surface roughness on GFRP composite material

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Emerald Group Publishing Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Purpose The purpose of this study is to optimize processing parameters to get the smallest average surface roughness (Ra) and delamination damage (F-d) values during drilling via abrasive water jet (AWJ) of the glass fiber-reinforced polymer composite material produced at [0 degrees/90 degrees](s) fiber orientation angles. Design/methodology/approach Drilling experiments were done via AWJ with three-axis computer numerical control (CNC) control system. Machine processing parameters such as water pressure of 3,600, 4,300, 4,800 and 5,300 bar; stand-off distance of 1, 2, 3 and 4 mm; traverse rate of 750, 1,500, 2,000 and 3,000 mm/min; and hole diameters of 8, 10, 12 and 14 mm have been selected. The effects of processing parameters in drilling experiments were investigated in conformity with the Taguchi L-16 orthogonal array and the data obtained were analyzed using Minitab 17 software. The signal/noise (S/N) ratio was taken as a basis for evaluating the test results. Optimum processing conditions were determined by calculating the S/N ratio for both Ra and F-d in conformity with the smaller is better approximation. The effects of processing parameters on Ra and F-d were statistically investigated using analysis of variance, S/N ratio and Taguchi-based gray relational analysis. Ra and F-d were predicted by evaluating with the ANN model and were predicted with the least amount of error. Findings It has been determined that the most effective parameter for Ra and F-d is the water pressure and then the stand-off distance. Originality/value The novel approach is to reduce cost and the time spent by using Taguchi optimization as a result of AWJ drilling the material in this fiber orientation [0 degrees/90 degrees](s).

Açıklama

Anahtar Kelimeler

Glass Fiber-Reinforced Polymer Composite; Abrasive Water Jet; Taguchi-Based Gray Relational Analysis; Artificial Neural Network (Ann), Prediction; Optimization; Strength; Model

Kaynak

Multidiscipline Modeling In Materials and Structures

WoS Q Değeri

Q3

Scopus Q Değeri

Q3

Cilt

18

Sayı

4

Künye