TwitterSentiDetector: a domain-independent Twitter sentiment analyser
dc.contributor.author | Kabakuş, Abdullah Talha | |
dc.contributor.author | Kara, Resul | |
dc.date.accessioned | 2020-04-30T23:46:50Z | |
dc.date.available | 2020-04-30T23:46:50Z | |
dc.date.issued | 2018 | |
dc.department | DÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description | Kabakus, Abdullah Talha/0000-0003-2181-4292; Kara, Resul/0000-0001-8902-6837 | en_US |
dc.description | WOS: 000437366500001 | en_US |
dc.description.abstract | Sentiment analysis has become more crucial after the rise of social media, especially the Twitter since it provides structured and publicly available data. TwitterSentiDetector is a domain-dependent and unsupervised Twitter sentiment analyser that focuses on the differences occurred by the informal language used in Twitter. TwitterSentiDetector uses natural language processing techniques alongside the proposed linguistic methods to classify sentiments of tweets into positive, negative, and neutral through the polarity scores obtained from sentiment lexicons. According to tests on widely used Twitter data-sets that contain manually detected sentiments labels alongside tweets, TwitterSentiDetector's sentiment detection ratio is calculated as up to 69%. When the target sentiment classes are decreased to positive and negative, the detection ratio is increased up to 87%. The results are calculated very similarly when the same data-set is evaluated by the proposed tweet-level context aware sentiment analysis module which confirms the validity of each approach. | en_US |
dc.identifier.doi | 10.1080/03155986.2017.1340797 | en_US |
dc.identifier.endpage | 162 | en_US |
dc.identifier.issn | 0315-5986 | |
dc.identifier.issn | 1916-0615 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 137 | en_US |
dc.identifier.uri | https://doi.org/10.1080/03155986.2017.1340797 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/5287 | |
dc.identifier.volume | 56 | en_US |
dc.identifier.wos | WOS:000437366500001 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Inc | en_US |
dc.relation.ispartof | Infor | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Twitter sentiment analysis | en_US |
dc.subject | sentiment analysis | en_US |
dc.subject | natural language processing | en_US |
dc.subject | social media mining | en_US |
dc.subject | sentiment detection | en_US |
dc.title | TwitterSentiDetector: a domain-independent Twitter sentiment analyser | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 5287.pdf
- Boyut:
- 1.41 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text