TwitterSpamDetector A Spam Detection Framework for Twitter

dc.contributor.authorKabakuş, Abdullah Talha
dc.contributor.authorKara, Resul
dc.date.accessioned2020-04-30T23:46:50Z
dc.date.available2020-04-30T23:46:50Z
dc.date.issued2019
dc.departmentDÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.descriptionKara, Resul/0000-0001-8902-6837en_US
dc.descriptionWOS: 000500703400001en_US
dc.description.abstractTwitter is the most popular microblogging platform which lets users post status messages called tweets. This popularity and the advanced API provided by Twitter to read and write Twitter data programmatically attracts the attention of spammers as well as legitimate users. Since Twitter has some unique characteristics, the traditional spam detecting methods cannot be directly used to detect spam on Twitter. Therefore, a spam detection framework which is specially designed for Twitter namely TwitterSpamDetector is proposed in this paper. TwitterSpamDetector uses Twitter-specific features to detect spam on Twitter. 77,033 tweets which are posted by 50,490 users collected using the API provided by Twitter. Naive Bayes is used to train TwitterSpamDetector using the selected features of Twitter which clearly classify the spammers from legitimate users. According to the evaluation result, TwitterSpamDetector's accuracy and sensitivity are calculated as 0.943 and 0.913, respectively.en_US
dc.identifier.doi10.4018/IJKSS.2019070101en_US
dc.identifier.endpage14en_US
dc.identifier.issn1947-8208
dc.identifier.issn1947-8216
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.4018/IJKSS.2019070101
dc.identifier.urihttps://hdl.handle.net/20.500.12684/5288
dc.identifier.volume10en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIgi Globalen_US
dc.relation.ispartofInternational Journal Of Knowledge And Systems Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMicroblogsen_US
dc.subjectSocial Network Securityen_US
dc.subjectSpam Detectionen_US
dc.subjectTwitteren_US
dc.titleTwitterSpamDetector A Spam Detection Framework for Twitteren_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
5288.pdf
Boyut:
667.79 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text