A Study Of Fractional Hermite-Hadamard-Mercer Inequalities For Differentiable Functions

dc.authoridVivas-Cortez, Miguel/0000-0002-1567-0264en_US
dc.authoridAvcı, İbrahim/0000-0003-0986-2195en_US
dc.authoridSitthiwirattham, Thanin/0000-0002-8455-1402en_US
dc.authoridBudak, Huseyin/0000-0001-8843-955Xen_US
dc.authorscopusid36626202600en_US
dc.authorscopusid57192417272en_US
dc.authorscopusid57199279462en_US
dc.authorscopusid57038541500en_US
dc.authorscopusid57215219538en_US
dc.authorwosidBUDAK, Hüseyin/CAA-1604-2022en_US
dc.authorwosidVivas-Cortez, Miguel/AAC-9992-2019en_US
dc.authorwosidAvcı, İbrahim/AAB-1382-2020en_US
dc.contributor.authorSitthiwirattham, Thanin
dc.contributor.authorVivas-Cortez, Miguel
dc.contributor.authorAli, Muhammad aamir
dc.contributor.authorBudak, Huseyin
dc.contributor.authorAvci, Ibrahim
dc.date.accessioned2024-08-23T16:04:14Z
dc.date.available2024-08-23T16:04:14Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractIn this work, we prove a parameterized fractional integral identity involving differentiable functions. Then, we use the newly established identity to establish some new parameterized fractional Hermite-Hadamard-Mercer-type inequalities for differentiable function. The main benefit of the newly established inequalities is that these inequalities can be converted into some new Mercer inequalities of midpoint type, trapezoidal type, and Simpson's type for differentiable functions. Finally, we show the validation of the results with the help of some mathematical examples and their graphs.en_US
dc.description.sponsorshipNSRF [B05F640163]; Pontifical Catholic University of Ecuador Project [070-UIO-2022]en_US
dc.description.sponsorshipThis research has received funding support from the NSRF via the Program Management Unit for Human Resources and Institutional Development,Research, and Innovation (Grant No. B05F640163). This study was also supported via funding from the Pontifical Catholic University of Ecuador Project No. (070-UIO-2022). All the authors would like to thank dear reviewers for their useful and constructive comments to improve the quality of the paper.en_US
dc.identifier.doi10.1142/S0218348X24400164
dc.identifier.issn0218-348X
dc.identifier.issn1793-6543
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85183563941en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1142/S0218348X24400164
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14113
dc.identifier.volume32en_US
dc.identifier.wosWOS:001145306500005en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofFractals-Complex Geometry Patterns And Scaling in Nature And Societyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMidpoint Inequalitiesen_US
dc.subjectTrapezoidal Inequalitiesen_US
dc.subjectSimpson's Inequalitiesen_US
dc.subjectJensen-Mercer Inequalityen_US
dc.subjectReal Numbersen_US
dc.subjectMappingsen_US
dc.titleA Study Of Fractional Hermite-Hadamard-Mercer Inequalities For Differentiable Functionsen_US
dc.typeArticleen_US

Dosyalar