Lityum İyon Piller İçin Sn-Cu/rGO (İndirgenmiş Grafen Oksit) Anot Malzemelerin, Karakterizasyonu ve Elektrokimyasal Özellikleri
Yükleniyor...
Dosyalar
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Lityum iyon pilleri uzun kullanım ve raf ömrü, geniş kullanım sıcaklık aralığı, hızlı şarj edilebilirlik, yüksek enerji verimliliği gibi özellikleriyle son zamanlarda öne çıkan güç kaynaklarındandır. Grafite alternatif olarak kalay esaslı elektrot malzemeleri yüksek kapasite değerlerinden dolayı ilgi çekicidir. Ancak şarj/deşarj esnasında kalay esaslı elektrot malzemesinin karşılaştığı en büyük problem hacim genleşmesidir. Bu problemi aşmaya yönelik olarak aktif veya inaktif malzeme ile birleştirilerek değiştirilebilir. Sn, Sn-Cu ve Sn-Cu/rGO tozları kimyasal indirgeme yöntemi ile Li iyon piller için anot malzemesi olarak üretilmiştir. Sn, Sn-Cu ve Sn-Cu/rGO tozların mikroyapı incelemeleri taramalı elektron mikroskobu (SEM) ile gerçekleştirilmiştir. Enerji dağılım X-ışınları spektroskopisi (EDS) ile Sn-Cu/rGO kompozit tozlarının elementel analizleri yapılmıştır.. Üretilen Sn, Sn-Cu ve Sn-Cu/rGO tozlar bakır akım toplayıcı üzerinde elektrot olarak hazırlanmış ve CR2016 düğme tipi hücreler kullanılarak 200 mA/g sabit akım yoğunluğunda elektrokimyasal testleri gerçekleştirilmiştir. Elektrokimyasal test sonuçlarına göre, Sn-Cu/rGO kompozit anot malzemesi Sn ve Sn-Cu elektrotlara göre daha iyi elektrokimyasal performans göstermiş ve 100 çevrim sonunda yaklaşık 430 mAh/g deşarj kapasitesi elde edilmiştir.
Li-ion batteries are the most studied power sources because of the properties of long cycle and shelf life, broad temperature range of operation, rapid charge capability and high coulombic and energy efficiency. Recently, there has been tremendous interest and effort to the synthesis of tin-based compounds as alternatives to graphite materials, with the aim of improving the capacity and energy density of lithium ion batteries. However, a large specific volume changing occurs during Li insertion and extraction reactions, which causes the electrode to fail by pulverization. Therefore, the main issue on the improvement of the Sn cycle performance is how to overcome the volume change and prevent the pulverization of particles. Sn, Sn-Cu and Sn-Cu / rGO powders were produced as anode material for Li ion batteries by chemical reduction method. Microstructural characterization of Sn, Sn-Cu ve Sn-Cu/rGO were carried out using scanning electron microscopy (SEM) Elemental analyses of Sn-Cu/rGO composite powders were performed using energy dispersive X-ray spectroscopy (EDS). Produced Sn, Sn-Cu ve Sn-Cu/rGO anode materials were prepared as an electrode on the copper current collector and electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to the electrochemical test results, Sn-Cu / rGO composite anode material showed better electrochemical performance than Sn and Sn-Cu anode materials and discharge capacity of about 430 mAh g was obtained after 100 cycles.
Li-ion batteries are the most studied power sources because of the properties of long cycle and shelf life, broad temperature range of operation, rapid charge capability and high coulombic and energy efficiency. Recently, there has been tremendous interest and effort to the synthesis of tin-based compounds as alternatives to graphite materials, with the aim of improving the capacity and energy density of lithium ion batteries. However, a large specific volume changing occurs during Li insertion and extraction reactions, which causes the electrode to fail by pulverization. Therefore, the main issue on the improvement of the Sn cycle performance is how to overcome the volume change and prevent the pulverization of particles. Sn, Sn-Cu and Sn-Cu / rGO powders were produced as anode material for Li ion batteries by chemical reduction method. Microstructural characterization of Sn, Sn-Cu ve Sn-Cu/rGO were carried out using scanning electron microscopy (SEM) Elemental analyses of Sn-Cu/rGO composite powders were performed using energy dispersive X-ray spectroscopy (EDS). Produced Sn, Sn-Cu ve Sn-Cu/rGO anode materials were prepared as an electrode on the copper current collector and electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to the electrochemical test results, Sn-Cu / rGO composite anode material showed better electrochemical performance than Sn and Sn-Cu anode materials and discharge capacity of about 430 mAh g was obtained after 100 cycles.
Açıklama
Anahtar Kelimeler
Kaynak
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE
WoS Q Değeri
Scopus Q Değeri
Cilt
5
Sayı
3