Compact operators on the Jordan totient sequence spaces

dc.authoridIlkhan, Merve/0000-0002-0831-1474
dc.authoridKara, Emrah Evren/0000-0002-6398-4065
dc.authorwosidUsta, Fuat/ABE-1004-2020
dc.contributor.authorIlkhan, Merve
dc.contributor.authorKara, Evren Emrah
dc.contributor.authorUsta, Fuat
dc.date.accessioned2021-12-01T18:47:23Z
dc.date.available2021-12-01T18:47:23Z
dc.date.issued2021
dc.department[Belirlenecek]en_US
dc.description.abstractThe necessary and sufficient conditions for compactness of a matrix operator between Banach spaces is obtained by utilizing the concept of the Hausdorff measure of noncompactness. This is one of the most interesting application in the theory of sequence spaces. In this paper, the compact operators are characterized on Jordan totient sequence spaces by using the concept of the Hausdorff measure of noncompactness.en_US
dc.identifier.doi10.1002/mma.6537
dc.identifier.endpage7675en_US
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85085569587en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage7666en_US
dc.identifier.urihttps://doi.org/10.1002/mma.6537
dc.identifier.urihttps://hdl.handle.net/20.500.12684/10254
dc.identifier.volume44en_US
dc.identifier.wosWOS:000535823500001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofMathematical Methods In The Applied Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBanach sequence spaceen_US
dc.subjectcompact operatorsen_US
dc.subjectJordan totient functionen_US
dc.subjectregular matrixen_US
dc.titleCompact operators on the Jordan totient sequence spacesen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
10254.pdf
Boyut:
297.08 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text