Experimental investigation of the thermal efficiency of a new cavity receiver design for concentrator solar technology
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The most popular design for solar energy receivers that achieves great thermal performance is a cavity receiver. This study experimentally compared two novel shapes of cavity receivers: conical-cylindrical-conical (CCC) and double cylindrical, with conventional conical and cylindrical designs, to examine the effectiveness of solar energy receivers. The findings indicate that the CCC shape demonstrated a higher level of efficiency, as it performed better than all other shapes that were examined. Results emphasized the influence of radiation intensity on receiver efficiency, with all shapes exhibiting improved performance at higher intensities, maximizing at 1000 W/m2. Lower friction factors were desirable for minimizing heat losses and maximizing efficiency, resulting in values of 0.078, 0.09, 0.1, and 0.12 for CCC, conical, double cylindrical, and cylindrical shapes at a flow rate of 2 L/min, respectively. The temperature differences for CCC, conical, double cylindrical, and cylindrical shapes are computed as 6.4 degrees C, 5.7 degrees C, 5 degrees C, and 4.3 degrees C, respectively. The thermal efficiencies of the CCC, conical, double cylindrical, and cylindrical shapes are computed as 86.5 %, 81.5 %, 79.9 %, and 68.9 %, respectively, at a flow rate of 2 L/min.
Açıklama
Anahtar Kelimeler
Concentrator solar technology, Cavity receiver, Double cylindrical shape, Innovative receiver design, Conical-cylindrical-conical, Dish Concentrator, Performance, Optimization
Kaynak
Case Studies in Thermal Engineering
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
53