Two-Stage Clustering Approach for the Household Electricity Load Profiles by Fuzzy Logic and Neural Network Techniques

dc.contributor.authorEtlik, Uğur Buğra
dc.contributor.authorEren, Yavuz
dc.date.accessioned2023-04-10T20:29:34Z
dc.date.available2023-04-10T20:29:34Z
dc.date.issued2022
dc.departmentRektörlük, Rektörlüğe Bağlı Birimler, Düzce Üniversitesi Dergilerien_US
dc.description.abstractIn this paper, household electricity load profile (LP) clustering problem is addressed. LP clustering analysis has been utilized as predicted end-user LPs for demand or supply management strategies to maintain the stability of the power systems. The consumption dynamics of the LPs are formed by the combinations of technical and social factors. Hence, discovering the dynamic patterns of the LPs has been a challenging problem. For this problem, we have offered successive applications of Sugeno fuzzy-logic (SFL) and self-organizing map neural network (SOMNN) techniques. Firstly, the data sets of the LPs are clustered by fuzzy logic approach by the reference models which are generated with the common family-types per persons. Then, considering the extra input of the weighted occupancy profiles, SOMNN is performed to improve the clustering result according to the dataset. The proposed strategy has been simulated by MATLAB® and the related results are presented.en_US
dc.identifier.doi10.29130/dubited.1009823
dc.identifier.endpage990en_US
dc.identifier.issn2148-2446
dc.identifier.issue2en_US
dc.identifier.startpage981en_US
dc.identifier.trdizinid1125231en_US
dc.identifier.urihttp://doi.org/10.29130/dubited.1009823
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1125231
dc.identifier.urihttps://hdl.handle.net/20.500.12684/11930
dc.identifier.volume10en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofDüzce Üniversitesi Bilim ve Teknoloji Dergisi
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClusteringen_US
dc.subjectSugeno Fuzzy Logicen_US
dc.subjectSelf-Organizing Map Neural Networken_US
dc.subjectHousehold Load Profiles Kümelemeen_US
dc.subjectSugeno Bulanık Mantıken_US
dc.subjectÖz-düzenleyici Harita Yapay Sinir Ağlarıen_US
dc.subjectEvsel Yük Profillerien_US
dc.titleTwo-Stage Clustering Approach for the Household Electricity Load Profiles by Fuzzy Logic and Neural Network Techniquesen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
11930.pdf
Boyut:
1.88 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text