Sparse Array Selection Across Arbitrary Sensor Geometries With Deep Transfer Learning

dc.authoridElbir, Ahmet M./0000-0003-4060-3781
dc.authorwosidElbir, Ahmet M./X-3731-2019
dc.contributor.authorElbir, Ahmet M.
dc.contributor.authorMishra, Kumar Vijay
dc.date.accessioned2021-12-01T18:48:21Z
dc.date.available2021-12-01T18:48:21Z
dc.date.issued2021
dc.department[Belirlenecek]en_US
dc.description.abstractSparse sensor array selection arises in many engineering applications, where it is imperative to obtain maximum spatial resolution from a limited number of array elements. Recent research shows that computational complexity of array selection is reduced by replacing the conventional optimization and greedy search methods with a deep learning network. However, in practice, sufficient and well-calibrated labeled training data are unavailable and, more so, for arbitrary array configurations. To address this, we adopt a deep transfer learning (TL) approach, wherein we train a deep convolutional neural network (CNN) with data of a source sensor array for which calibrated data are readily available and reuse this pre-trained CNN for a different, data-insufficient target array geometry to perform sparse array selection. Numerical experiments with uniform rectangular and circular arrays demonstrate enhanced performance of TL-CNN on the target model than the CNN trained with insufficient data from the same model. In particular, our TL framework provides approximately 20% higher sensor selection accuracy and 10% improvement in the direction-of-arrival estimation error.en_US
dc.identifier.doi10.1109/TCCN.2020.2999811
dc.identifier.endpage264en_US
dc.identifier.issn2332-7731
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85102319889en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage255en_US
dc.identifier.urihttps://doi.org/10.1109/TCCN.2020.2999811
dc.identifier.urihttps://hdl.handle.net/20.500.12684/10515
dc.identifier.volume7en_US
dc.identifier.wosWOS:000626515700021en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIeee-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactions On Cognitive Communications And Networkingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSensor arraysen_US
dc.subjectGeometryen_US
dc.subjectDirection-of-arrival estimationen_US
dc.subjectTrainingen_US
dc.subjectDeep learningen_US
dc.subjectTraining dataen_US
dc.subjectDeep learningen_US
dc.subjectdirection-of-arrival estimationen_US
dc.subjectsensor placementen_US
dc.subjectsparse arraysen_US
dc.subjecttransfer learningen_US
dc.titleSparse Array Selection Across Arbitrary Sensor Geometries With Deep Transfer Learningen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10515.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text