Effects of diagram plane on neural network based modulation recognition
dc.authorid | Çalhan, Ali/0000-0002-5798-3103 | en_US |
dc.authorid | Leblebici, Merih/0000-0002-7709-2906 | en_US |
dc.authorid | CİCİOĞLU, MURTAZA/0000-0002-5657-7402 | en_US |
dc.authorscopusid | 58723537700 | en_US |
dc.authorscopusid | 16548877100 | en_US |
dc.authorscopusid | 57203170833 | en_US |
dc.authorwosid | Çalhan, Ali/H-1375-2014 | en_US |
dc.authorwosid | Leblebici, Merih/HZK-6228-2023 | en_US |
dc.authorwosid | CİCİOĞLU, MURTAZA/AAL-5004-2020 | en_US |
dc.contributor.author | Leblebici, Merih | |
dc.contributor.author | Calhan, Ali | |
dc.contributor.author | Cicioglu, Murtaza | |
dc.date.accessioned | 2024-08-23T16:04:56Z | |
dc.date.available | 2024-08-23T16:04:56Z | |
dc.date.issued | 2024 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | Modulation recognition using deep learning presents challenges in effectively distinguishing high -order modulation schemes while maintaining a balance between complexity and recognition accuracy. In this study, we curate a comprehensive dataset in the r theta plane, encompassing eight distinct modulation schemes. Leveraging hyperparameter optimization and transfer learning, we explore the capabilities of various CNN -based architectures, including MobileNetV2, ResNet50V2, ResNet101V2, InceptionV3, ResNet152V2, Xception, and InceptionResNetV2, for the classification of modulation schemes. The simulation results demonstrate that with signalto-noise ratio (SNR) values exceeding 5 dB, all models exhibit classification accuracies surpassing 50% and approach near -perfect accuracy at an SNR value of 20 dB. However, under low SNR conditions, such as 5 dB, the recognition accuracies of all models, except for ResNet152V2 and InceptionV3, show minimal variation. As the SNR increases by 5 dB from -5 dB to 20 dB, ResNet152V2 and InceptionV3 demonstrate remarkable classification accuracy improvements, exceeding 40%, 30%, 30%, 10%, and 15%, respectively. In contrast, the other models do not exhibit such robust responsiveness in accuracy enhancements. The remarkable performance improvements are achieved by fine-tuning pre -trained models through these processes. | en_US |
dc.description.sponsorship | Dzce University Scientific Research Project [BAP-2023.06.01.1410] | en_US |
dc.description.sponsorship | Acknowledgments This work was supported by the Duzce University Scientific Research Project under Grant BAP-2023.06.01.1410. | en_US |
dc.identifier.doi | 10.1016/j.asoc.2024.111412 | |
dc.identifier.issn | 1568-4946 | |
dc.identifier.issn | 1872-9681 | |
dc.identifier.scopus | 2-s2.0-85185781736 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.asoc.2024.111412 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/14415 | |
dc.identifier.volume | 154 | en_US |
dc.identifier.wos | WOS:001190913100001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Applied Soft Computing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Modulation recognition | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Transfer learning | en_US |
dc.subject | Constellation diagram | en_US |
dc.subject | Classification | en_US |
dc.title | Effects of diagram plane on neural network based modulation recognition | en_US |
dc.type | Article | en_US |