Optimization of the pilot fuel injection and engine load for an algae biodiesel- hydrogen run dual fuel diesel engine using response surface methodology

dc.authoridBarik, Debabrata/0000-0003-3371-4619en_US
dc.authoridSHARMA, PRABHAKAR/0000-0002-7585-6693en_US
dc.authoridAgbulut, Umit/0000-0002-6635-6494en_US
dc.authorscopusid58608910900en_US
dc.authorscopusid56330335100en_US
dc.authorscopusid57202959651en_US
dc.authorscopusid58961316700en_US
dc.authorscopusid58596163100en_US
dc.authorscopusid55965259300en_US
dc.authorwosidBarik, Debabrata/P-1666-2016en_US
dc.authorwosidSHARMA, PRABHAKAR/ISU-9669-2023en_US
dc.contributor.authorMohite, Avadhoot
dc.contributor.authorBora, Bhaskor Jyoti
dc.contributor.authorAgbulut, Uemit
dc.contributor.authorSharma, Prabhakar
dc.contributor.authorMedhi, Bhaskar Jyoti
dc.contributor.authorBarik, Debabrata
dc.date.accessioned2024-08-23T16:04:45Z
dc.date.available2024-08-23T16:04:45Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThe main objective of the study is to enhance the performance and emissions of hydrogen and biodiesel dual-fuel engines by optimizing injection timing and engine load using response surface methodology. The pilot fuel considered for this study is Algae biodiesel. A mono-cylinder water-cooled diesel engine is tested for three different pilot fuel injection timings (23 degrees BTDC, 26 degrees BTDC, and 29 degrees BTDC) and five different engine loads (20%, 40%, 60%, 80%, and 100%). For a dual fuel operation, a maximum brake thermal efficiency of 28.21% and an 85% replacement of liquid charge was achieved at pilot fuel injection timing of 26 degrees BTDC and 100% load based on the experimental results. For the same setting of injection timing of 26 degrees BTDC, the emissions of CO and HC were significantly reduced by 12.12% and 36.13%, respectively, at the 80% load setting. While response surface optimum was found at 72.81% load and 25.73 degrees BTDC Injection timing. At this optimal operating parameter setting, a significant reduction of CO, HC, and NOx emissions by 20.98%, 29.15%, and 1.91%, respectively, was obtained while maintaining a comparable brake thermal efficiency of 25.06% and a replacement of liquid charge by 72.15%, respectively. Thus, a biodiesel-hydrogen dual-fuel diesel engine is one of the green solutions for power generation.en_US
dc.identifier.doi10.1016/j.fuel.2023.129841
dc.identifier.issn0016-2361
dc.identifier.issn1873-7153
dc.identifier.scopus2-s2.0-85172244000en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.fuel.2023.129841
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14351
dc.identifier.volume357en_US
dc.identifier.wosWOS:001085361200001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofFuelen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHydrogenen_US
dc.subjectAlgae biodieselen_US
dc.subjectDual fuel technologyen_US
dc.subjectResponse Surface Methodologyen_US
dc.subjectClean Development Mechanismen_US
dc.subjectCombustion Characteristicsen_US
dc.subjectEmission Characteristicsen_US
dc.subjectSingle Cylinderen_US
dc.subjectPerformanceen_US
dc.subjectDutyen_US
dc.subjectExhausten_US
dc.subjectCocombustionen_US
dc.subjectParametersen_US
dc.subjectVibrationen_US
dc.subjectSmokeen_US
dc.titleOptimization of the pilot fuel injection and engine load for an algae biodiesel- hydrogen run dual fuel diesel engine using response surface methodologyen_US
dc.typeArticleen_US

Dosyalar