Fractional Hermite-Hadamard inequality, Simpson's and Ostrowski's type inequalities for convex functions with respect to a pair of functions
dc.authorid | Fe?kan, Michal/0000-0002-7385-6737; | en_US |
dc.authorscopusid | 57189387487 | en_US |
dc.authorscopusid | 57199279462 | en_US |
dc.authorscopusid | 57038541500 | en_US |
dc.authorscopusid | 7004253438 | en_US |
dc.authorscopusid | 36626202600 | en_US |
dc.authorwosid | Fe?kan, Michal/T-4397-2018 | en_US |
dc.authorwosid | BUDAK, Hüseyin/CAA-1604-2022 | en_US |
dc.contributor.author | Xie, Jianqiang | |
dc.contributor.author | Ali, Muhammad Aamir | |
dc.contributor.author | Budak, Huseyin | |
dc.contributor.author | Feckan, Michal | |
dc.contributor.author | Sitthiwirattham, Thanin | |
dc.date.accessioned | 2024-08-23T16:04:03Z | |
dc.date.available | 2024-08-23T16:04:03Z | |
dc.date.issued | 2023 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | We consider the convexity with respect to a pair of functions and establish a Hermite-Hadamard type inequality for Riemann-Liouville fractional integrals. Moreover, we derive some new Simpson's and Ostrowski's type inequalities for differentiable convex mapping with respect to a pair of functions. We also show that the newly established inequalities are the extension of some existing inequalities. Finally, we consider some mathematical examples and graphs to show the validity of the newly established inequalities. | en_US |
dc.description.sponsorship | National Natural Science Foundation of China [11971241, 12201005]; Natural Science Foundation of Anhui Province [2108085QA18]; Project of Quality Engineering of Anhui University [2022xjzlgc305] | en_US |
dc.description.sponsorship | Acknowledgments work was also partially supported by the National Natural Science Foundation of China (Nos. 11971241 & 12201005) , the Natural Science Foundation of Anhui Province (Grant no. 2108085QA18) , and Project of Quality Engineering of Anhui University (Grant no. 2022xjzlgc305) . | en_US |
dc.identifier.doi | 10.1216/rmj.2023.53.611 | |
dc.identifier.endpage | 628 | en_US |
dc.identifier.issn | 0035-7596 | |
dc.identifier.issn | 1945-3795 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85166416902 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 611 | en_US |
dc.identifier.uri | https://doi.org/10.1216/rmj.2023.53.611 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/14040 | |
dc.identifier.volume | 53 | en_US |
dc.identifier.wos | WOS:001022056700020 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Rocky Mt Math Consortium | en_US |
dc.relation.ispartof | Rocky Mountain Journal of Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Hermite-Hadamard inequality | en_US |
dc.subject | Simpson's inequality | en_US |
dc.subject | Ostrowski's inequality | en_US |
dc.subject | fractional calculus | en_US |
dc.subject | (g | en_US |
dc.subject | h)-convex functions | en_US |
dc.title | Fractional Hermite-Hadamard inequality, Simpson's and Ostrowski's type inequalities for convex functions with respect to a pair of functions | en_US |
dc.type | Article | en_US |