Fractional Hermite-Hadamard inequality, Simpson's and Ostrowski's type inequalities for convex functions with respect to a pair of functions

dc.authoridFe?kan, Michal/0000-0002-7385-6737;en_US
dc.authorscopusid57189387487en_US
dc.authorscopusid57199279462en_US
dc.authorscopusid57038541500en_US
dc.authorscopusid7004253438en_US
dc.authorscopusid36626202600en_US
dc.authorwosidFe?kan, Michal/T-4397-2018en_US
dc.authorwosidBUDAK, Hüseyin/CAA-1604-2022en_US
dc.contributor.authorXie, Jianqiang
dc.contributor.authorAli, Muhammad Aamir
dc.contributor.authorBudak, Huseyin
dc.contributor.authorFeckan, Michal
dc.contributor.authorSitthiwirattham, Thanin
dc.date.accessioned2024-08-23T16:04:03Z
dc.date.available2024-08-23T16:04:03Z
dc.date.issued2023en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractWe consider the convexity with respect to a pair of functions and establish a Hermite-Hadamard type inequality for Riemann-Liouville fractional integrals. Moreover, we derive some new Simpson's and Ostrowski's type inequalities for differentiable convex mapping with respect to a pair of functions. We also show that the newly established inequalities are the extension of some existing inequalities. Finally, we consider some mathematical examples and graphs to show the validity of the newly established inequalities.en_US
dc.description.sponsorshipNational Natural Science Foundation of China [11971241, 12201005]; Natural Science Foundation of Anhui Province [2108085QA18]; Project of Quality Engineering of Anhui University [2022xjzlgc305]en_US
dc.description.sponsorshipAcknowledgments work was also partially supported by the National Natural Science Foundation of China (Nos. 11971241 & 12201005) , the Natural Science Foundation of Anhui Province (Grant no. 2108085QA18) , and Project of Quality Engineering of Anhui University (Grant no. 2022xjzlgc305) .en_US
dc.identifier.doi10.1216/rmj.2023.53.611
dc.identifier.endpage628en_US
dc.identifier.issn0035-7596
dc.identifier.issn1945-3795
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85166416902en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage611en_US
dc.identifier.urihttps://doi.org/10.1216/rmj.2023.53.611
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14040
dc.identifier.volume53en_US
dc.identifier.wosWOS:001022056700020en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherRocky Mt Math Consortiumen_US
dc.relation.ispartofRocky Mountain Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHermite-Hadamard inequalityen_US
dc.subjectSimpson's inequalityen_US
dc.subjectOstrowski's inequalityen_US
dc.subjectfractional calculusen_US
dc.subject(gen_US
dc.subjecth)-convex functionsen_US
dc.titleFractional Hermite-Hadamard inequality, Simpson's and Ostrowski's type inequalities for convex functions with respect to a pair of functionsen_US
dc.typeArticleen_US

Dosyalar