Cognitive radar antenna selection via deep learning
dc.contributor.author | Elbir, Ahmet Musab | |
dc.contributor.author | Mishra, Kumar Vijay | |
dc.contributor.author | Eldar, Yonina | |
dc.date.accessioned | 2020-04-30T22:40:57Z | |
dc.date.available | 2020-04-30T22:40:57Z | |
dc.date.issued | 2019 | |
dc.department | DÜ, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.description | Elbir, Ahmet M./0000-0003-4060-3781 | en_US |
dc.description | WOS: 000498816400002 | en_US |
dc.description.abstract | Direction-of-arrival (DoA) estimation of targets improves with the number of elements employed by a phased array radar antenna. Since larger arrays have high associated cost, area and computational load, there is a recent interest in thinning the antenna arrays without loss of far-field DoA accuracy. In this context, a cognitive radar may deploy a full array and then select an optimal subarray to transmit and receive the signals in response to changes in the target environment. Prior works have used optimisation and greedy search methods to pick the best subarrays cognitively. In this study, deep learning is leveraged to address the antenna selection problem. Specifically, they construct a convolutional neural network (CNN) as a multi-class classification framework, where each class designates a different subarray. The proposed network determines a new array every time data is received by the radar, thereby making antenna selection a cognitive operation. Their numerical experiments show that the proposed CNN structure provides 22% better classification performance than a support vector machine and the resulting subarrays yield 72% more accurate DoA estimates than random array selections. | en_US |
dc.description.sponsorship | European UnionEuropean Union (EU) [646804-ERC-COG-BNYQ]; Andrew and Erna Finci Viterbi Fellowship; Lady Davis Fellowship | en_US |
dc.description.sponsorship | K.V.M. and Y.C.E. were funded from the European Union's Horizon 2020 research and innovation programme under Grant agreement no. 646804-ERC-COG-BNYQ. K.V.M. also acknowledges partial support via Andrew and Erna Finci Viterbi Fellowship and Lady Davis Fellowship. | en_US |
dc.identifier.doi | 10.1049/iet-rsn.2018.5438 | en_US |
dc.identifier.endpage | 880 | en_US |
dc.identifier.issn | 1751-8784 | |
dc.identifier.issn | 1751-8792 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 871 | en_US |
dc.identifier.uri | https://doi.org/10.1049/iet-rsn.2018.5438 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/3092 | |
dc.identifier.volume | 13 | en_US |
dc.identifier.wos | WOS:000498816400002 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Inst Engineering Technology-Iet | en_US |
dc.relation.ispartof | Iet Radar Sonar And Navigation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Cognitive radar antenna selection via deep learning | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 3092.pdf
- Boyut:
- 40.59 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text