Synthesis and characterization of poly(linoleic-g-epsilon-caprolactone) graft copolymers via click reaction and ring-opening polymerization

Yükleniyor...
Küçük Resim

Tarih

2021

Yazarlar

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Indian Acad Sciences

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Linoleic acid modified with auto-oxidation, hydroxylation, bromination and azidation was used to synthesis graft copolymers using omega-alkyne-terminated poly(epsilon-caprolactone) (alk-PCLs) via click reaction. In the first step, the polymeric linoleic acid (PLina) as macroinitiator was obtained by the autoxidation of linoleic acid. Hydroxylation of the PLina was then carried out using diethanolamine to produce hydroxylated polymeric linoleic acid (PLina-OH). The PLina-OH was chemically modified with 2-bromopropionyl bromide to obtain bromo-functionalized polymeric linoleic acid (PLina-Br). This macroinitiator was then modified with sodium azide, resulting in azide polymeric linoleic acid (PLina-N-3). In a parallel process, omega-alkyne-terminated poly(epsilon-caprolactone) (alk-PCLs) were prepared via ROP of the epsilon-caprolactone monomer in the presence of propiolic acid, 3-butyn-1-ol, 5-hexynoic acid, and propargyl alcohol as the precursors and tin(II) 2-ethyl hexanoate (Sn(Oct)(2)) as the catalyst. These preliminary steps involved the synthesis of azide and alkyne compounds capable of being linked together via the alkyne-azide cycloaddition reaction catalyzed by copper (Cu(I)), which led to poly(linoleic acid)-g-poly(epsilon-caprolactone) (PLina-g-PCL). The obtained polymers were characterized by proton nuclear magnetic resonance (H-1 NMR), Fourier-transform infrared (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and elemental analysis.

Açıklama

Anahtar Kelimeler

Auto-oxidation, Hydroxylation, Ring-opening polymerization, click reaction, Graft copolymer, Surface-Initiated Atrp, Soybean-Oil, Renewable Resources, Chemistry, Combination, Polymers, Autoxidation, Derivatives, Behavior, Impact

Kaynak

Journal Of Chemical Sciences

WoS Q Değeri

Q3

Scopus Q Değeri

Q3

Cilt

133

Sayı

3

Künye