A novel robust convolutional neural network for uniform resource locator classification from the view of cyber security

dc.authoridKabakuş, Abdullah Talha/0000-0003-2181-4292
dc.authorwosidKabakuş, Abdullah Talha/J-8361-2019
dc.contributor.authorKabakuş, Abdullah Talha
dc.date.accessioned2023-07-26T11:50:05Z
dc.date.available2023-07-26T11:50:05Z
dc.date.issued2023
dc.departmentDÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractUniform resource locator (URL)-based cyber-attacks form a major part of security threats in cyberspace. Even though the experience and awareness of the end-users help them protect themselves from these attacks, a software-based solution is necessary for comprehensive protection. To this end, a novel robust URL classification model based on convolutional neural network is proposed in this study. The proposed model classifies given URLs into five classes, namely, (i$$ \mathrm{i} $$) benign$$ \mathrm{benign} $$, (ii$$ \mathrm{ii} $$) defacement$$ \mathrm{defacement} $$, (iii$$ \mathrm{iii} $$) phishing$$ \mathrm{phishing} $$, (iv$$ \mathrm{iv} $$) spam$$ \mathrm{spam} $$, and (v$$ \mathrm{v} $$) malware$$ \mathrm{malware} $$. The proposed model was trained and evaluated on a gold standard URL dataset comprising of 36,707$$ \mathrm{36,707} $$ samples. According to the experimental result, the proposed model obtained an accuracy as high as 98.1%$$ 98.1\% $$ which outperformed the state-of-the-art. Based on the same architecture, we proposed another classifier, a binary classifier that detects malicious URLs without dealing with their types. This binary classifier obtained an accuracy as high as 99.3%$$ 99.3\% $$ which outperformed the state-of-the-art as well. The experimental result demonstrates the feasibility of the proposed solution.en_US
dc.description.sponsorship[ISCX-URL-2016]en_US
dc.description.sponsorshipACKNOWLEDGMENT We would like to thank the maintainers of the ISCX-URL-2016 for publicly sharing their dataset as a contribution to the research field.en_US
dc.identifier.doi10.1002/cpe.7517
dc.identifier.issn1532-0626
dc.identifier.issn1532-0634
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85143274254en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.urihttps://doi.org/10.1002/cpe.7517
dc.identifier.urihttps://hdl.handle.net/20.500.12684/12226
dc.identifier.volume35en_US
dc.identifier.wosWOS:000888000300001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKabakuş, Abdullah Talha
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofConcurrency and Computation-Practice & Experienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz$2023V1Guncelleme$en_US
dc.subjectConvolutional Neural Network; Cyber Security; Deep Neural Network; Malicious Url Classification; Malicious Url Detectionen_US
dc.titleA novel robust convolutional neural network for uniform resource locator classification from the view of cyber securityen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
12226.pdf
Boyut:
1.86 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text