Graphene aerogel based positive electrode for lithium ion batteries

dc.authoridSingil, Mustafa Mahmut/0000-0002-7666-8918en_US
dc.authorscopusid57442986900en_US
dc.authorscopusid57034927900en_US
dc.authorscopusid58157415500en_US
dc.authorscopusid57201131288en_US
dc.authorscopusid57203584519en_US
dc.authorscopusid58157073100en_US
dc.authorscopusid57201131686en_US
dc.authorwosidSingil, Mustafa Mahmut/HTM-0086-2023en_US
dc.contributor.authorKuruahmet, Deniz
dc.contributor.authorGuler, Aslihan
dc.contributor.authorYildirim, Sidika
dc.contributor.authorSingil, Mustafa Mahmut
dc.contributor.authorGungor, Hatice
dc.contributor.authorUzun, Esma
dc.contributor.authorAlkan, Engin
dc.date.accessioned2024-08-23T16:04:47Z
dc.date.available2024-08-23T16:04:47Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractIn this study, a composite of LiNi0.8Mn0.1Co0.1O2 nanoparticles (nNMC-811) supported by three-dimensional (3D) graphene aerogel (GA) was prepared to increase the practical energy density and performance capability of high nickel cathodes. The porous LiNi0.8Mn0.1Co0.1O2 nanoparticle/graphene aerogel (nNMC-811/GA) composite is composed of nNMC-811 and graphene that act as a bridge for electron transfer and acceleration of lithium ion diffusion. nNMC-811 and nNMC-811/GA cathodes characterization data with techniques including X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS) are discussed. Both Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) made clear observations of the uniform distribution of the cathode active powders over the 3D graphene aerogel structure. The electrochemical performance of the nNMC-811 and nNMC-811/GA cathodes was evaluated by the galvanostatic charge-discharge measurement between 2.5 V and 4.5 V at room temperature using a computer-controlled battery tester. In addition, variable speed capacity ratios (C-rate), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) analyzes were also performed. nNMC-811/GA hybrid composite structure delivers a specific capacity of 183.15 mAhg(-1) at C/2 after the 500th cycle. It is understood from the FE-SEM images taken after the cycle that there is no deterioration in the structure. According to results, it was observed that the 3D porous structure of the nNMC-811/GA composite facilitated the mobility of Li+ ions, and the excellent electrochemical performances of the cathodes were improved due to the increasing defects as well as the electrical conductivity of GA.en_US
dc.identifier.doi10.1016/j.est.2024.111479
dc.identifier.issn2352-152X
dc.identifier.issn2352-1538
dc.identifier.scopus2-s2.0-85189303896en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.est.2024.111479
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14361
dc.identifier.volume88en_US
dc.identifier.wosWOS:001220099400001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Energy Storageen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGraphene aerogelen_US
dc.subjectLithium ionen_US
dc.subjectNMC-811en_US
dc.subjectCathodeen_US
dc.subject3D porous structuresen_US
dc.subjectRich Layered Cathodeen_US
dc.subjectNi-Richen_US
dc.subjectElectrochemical Performanceen_US
dc.subjectOxide Cathodesen_US
dc.subjectAnode Materialen_US
dc.subjectEnergyen_US
dc.subjectLinio2en_US
dc.subjectStabilityen_US
dc.subjectSpectroscopyen_US
dc.subjectGraphiteen_US
dc.titleGraphene aerogel based positive electrode for lithium ion batteriesen_US
dc.typeArticleen_US

Dosyalar