Enhanced automatic voltage regulation using an extended PIDA controller optimised by the snake algorithm

dc.contributor.authorChetty, Nelson Dhanpal
dc.contributor.authorGandhi, Ravi
dc.contributor.authorSharma, Gulshan
dc.contributor.authorCelik, Emre
dc.contributor.authorKumar, Rajesh
dc.date.accessioned2025-10-11T20:48:27Z
dc.date.available2025-10-11T20:48:27Z
dc.date.issued2025
dc.departmentDüzce Üniversitesien_US
dc.description.abstractMaintaining voltage stability within acceptable limits is crucial in power systems, with Automatic Voltage Regulation (AVR) ensuring consistent performance. Traditionally, PID controllers have been widely used; however, they struggle in complex, nonlinear environments with fluctuating conditions and disturbances. This study proposes an Extended PID-Acceleration (ePIDA) controller incorporating a novel state observer-based Disturbance Observer (DOB) for enhanced voltage regulation. The Snake Optimiser (SO) is introduced for the first time in AVR tuning, leveraging its dynamic leader-follower mechanism to achieve faster convergence and optimal controller gains. The SO-ePIDA framework extends the traditional PIDA structure with a three-degree-offreedom (3DOF) approach, enhancing setpoint tracking and disturbance rejection. The proposed approach is evaluated against six widely used optimisation strategies through comparative statistical and graphical analyses, considering step-load variations and system parameter settings. Results demonstrate that the SO-ePIDA controller achieves a rise time of 0.1679 s, a settling time of 0.3123 s, and the lowest ISTAE value of 0.0046, ensuring superior transient response and steady-state accuracy. Furthermore, under a 30 % step-load disturbance, the proposed controller exhibits the fastest recovery time of 0.1065 s, significantly outperforming other methods. The AVR system was tested with +25 % and +50 % variations in system parameters to assess robustness under parametric uncertainty. The results confirm that the SO-ePIDA controller maintains stability, with rise time deviations limited to 0.1577 and 0.2004 s and ISTAE variations between 0.0116 and 0.1891, demonstrating strong adaptability under extreme operating conditions. These findings establish the SO-ePIDA framework as a robust, high-performance solution for real-world AVR applications.en_US
dc.identifier.doi10.1016/j.rineng.2025.105181
dc.identifier.issn2590-1230
dc.identifier.scopus2-s2.0-105004260859en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.rineng.2025.105181
dc.identifier.urihttps://hdl.handle.net/20.500.12684/21932
dc.identifier.volume26en_US
dc.identifier.wosWOS:001509798000001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofResults in Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_WOS_20250911
dc.subjectDisturbance observeren_US
dc.subjectSnake optimizeren_US
dc.subjectVoltage Regulationen_US
dc.subjectPIDa Controlleren_US
dc.titleEnhanced automatic voltage regulation using an extended PIDA controller optimised by the snake algorithmen_US
dc.typeArticleen_US

Dosyalar