Metrik Öğrenmesi Kullanarak Çeşitli Kanser Dokularına Ait Mikro Dizi Gen Verilerinin Sınıflandırılması

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Kanserli dokuların heterojen doğası gereği birçok kanserin alt türü vardır, ve bu alt türler tespit edilmedikçe kanser tedavisi hedefi bulamaz. Mikrodizi gen teknolojisi ve veri teknolojisinin gelişmesiyle beraber, son yıllarda kanserli dokulara ait mikro dizi gen ifadesi verilerini kullanarak makine öğrenmesi yardımıyla kanserlerin alt türünü tespit etmek yaygınlaşmıştır. Fakat burada asıl problem, veri setinde her bir gene bir özniteliğin karşılık gelmesi, bu yüzden yüksek boyut probleminin ortaya çıkmasıdır. Bu çalışmada üç farklı metrik öğrenmesi metodu (LMNN, ITML ve NCA) ayrı ayrı kullanılarak çeşitli kanser türlerine ait mikro dizi gen veri setleri boyutu azaltılmış uzaylara transfer edilmiştir. Bu sayede, PCA gibi klasik boyut azaltma yöntemlerinden farklı olarak boyutu azaltılmış uzayda, aynı sınıfa (kanser alt türüne) ait örnekleri birbirine yaklaştırılırken, farklı sınıflara ait örnekleri birbirinden uzaklaştırılmıştır. t-SNE metodu yardımıyla azaltılmış boyutlu uzaylar görüntülenerek sınıfların birbirinden ayrıştığı teyit edilmiştir. İlaveten, bu yeni uzaylarda sınıflama algoritmalarının daha performanslı çalıştığını göstermek amacıyla, ??-NN, en yakın merkez ve LVQ gibi örnek temelli (instance-based) sınıflama algoritmaları çalıştırılmış ve bu algoritmaların kanser türlerini tespit etmede orjinal uzaydaki performanslarına göre yaklaşık %30'a kadar performanslarının arttığı gözlemlenmiştir.

Açıklama

Anahtar Kelimeler

Kaynak

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

9

Sayı

5

Künye