A numerical technique for solving nonlinear singularly perturbed Fredholm integro-differential equations

dc.authoridDurmaz, Muhammet Enes/0000-0002-6216-1032en_US
dc.authoridAmirali, Ilhame/0000-0002-5103-8856en_US
dc.authorscopusid58937081000en_US
dc.authorscopusid26026649800en_US
dc.authorscopusid56082815700en_US
dc.authorscopusid57218399879en_US
dc.authorscopusid6506398616en_US
dc.authorwosidDurmaz, Muhammet Enes/AAA-4251-2021en_US
dc.contributor.authorPanda, Abhilipsa
dc.contributor.authorMohapatra, Jugal
dc.contributor.authorAmirali, Ilhame
dc.contributor.authorDurmaz, Muhammet Enes
dc.contributor.authorAmiraliyev, Gabil M.
dc.date.accessioned2024-08-23T16:04:42Z
dc.date.available2024-08-23T16:04:42Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThis study deals with two numerical schemes for solving a class of singularly perturbed nonlinear Fredholm integro-differential equations. The nonlinear terms are linearized using the quasi -linearization technique. On the layer adapted Shishkin mesh, the numerical solution is initially calculated using the finite difference scheme for the differential part and quadrature rule for the integral part. The method proves to be first -order convergent in the discrete maximum norm. Then, using a post -processing technique we significantly enhance the accuracy from first order to second order. Further, a hybrid scheme on the nonuniform mesh is also constructed and analyzed whose solution converges uniformly, independent of the perturbation parameter and directly gives second order accuracy. Parameter uniform error estimates are demonstrated and the theoretical results are validated through some numerical tests.en_US
dc.identifier.doi10.1016/j.matcom.2024.02.011
dc.identifier.endpage629en_US
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.scopus2-s2.0-85185535720en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage618en_US
dc.identifier.urihttps://doi.org/10.1016/j.matcom.2024.02.011
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14305
dc.identifier.volume220en_US
dc.identifier.wosWOS:001194418600001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofMathematics And Computers in Simulationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFredholm integro-differential equationen_US
dc.subjectSingular perturbationen_US
dc.subjectHybrid schemeen_US
dc.subjectRichardson extrapolationen_US
dc.subjectConvergence analysisen_US
dc.titleA numerical technique for solving nonlinear singularly perturbed Fredholm integro-differential equationsen_US
dc.typeArticleen_US

Dosyalar