A numerical technique for solving nonlinear singularly perturbed Fredholm integro-differential equations
dc.authorid | Durmaz, Muhammet Enes/0000-0002-6216-1032 | en_US |
dc.authorid | Amirali, Ilhame/0000-0002-5103-8856 | en_US |
dc.authorscopusid | 58937081000 | en_US |
dc.authorscopusid | 26026649800 | en_US |
dc.authorscopusid | 56082815700 | en_US |
dc.authorscopusid | 57218399879 | en_US |
dc.authorscopusid | 6506398616 | en_US |
dc.authorwosid | Durmaz, Muhammet Enes/AAA-4251-2021 | en_US |
dc.contributor.author | Panda, Abhilipsa | |
dc.contributor.author | Mohapatra, Jugal | |
dc.contributor.author | Amirali, Ilhame | |
dc.contributor.author | Durmaz, Muhammet Enes | |
dc.contributor.author | Amiraliyev, Gabil M. | |
dc.date.accessioned | 2024-08-23T16:04:42Z | |
dc.date.available | 2024-08-23T16:04:42Z | |
dc.date.issued | 2024 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | This study deals with two numerical schemes for solving a class of singularly perturbed nonlinear Fredholm integro-differential equations. The nonlinear terms are linearized using the quasi -linearization technique. On the layer adapted Shishkin mesh, the numerical solution is initially calculated using the finite difference scheme for the differential part and quadrature rule for the integral part. The method proves to be first -order convergent in the discrete maximum norm. Then, using a post -processing technique we significantly enhance the accuracy from first order to second order. Further, a hybrid scheme on the nonuniform mesh is also constructed and analyzed whose solution converges uniformly, independent of the perturbation parameter and directly gives second order accuracy. Parameter uniform error estimates are demonstrated and the theoretical results are validated through some numerical tests. | en_US |
dc.identifier.doi | 10.1016/j.matcom.2024.02.011 | |
dc.identifier.endpage | 629 | en_US |
dc.identifier.issn | 0378-4754 | |
dc.identifier.issn | 1872-7166 | |
dc.identifier.scopus | 2-s2.0-85185535720 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 618 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.matcom.2024.02.011 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/14305 | |
dc.identifier.volume | 220 | en_US |
dc.identifier.wos | WOS:001194418600001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Mathematics And Computers in Simulation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fredholm integro-differential equation | en_US |
dc.subject | Singular perturbation | en_US |
dc.subject | Hybrid scheme | en_US |
dc.subject | Richardson extrapolation | en_US |
dc.subject | Convergence analysis | en_US |
dc.title | A numerical technique for solving nonlinear singularly perturbed Fredholm integro-differential equations | en_US |
dc.type | Article | en_US |