Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO
dc.authorid | Coleri, Sinem/0000-0002-7502-3122 | |
dc.authorid | Elbir, Ahmet M./0000-0003-4060-3781 | |
dc.authorwosid | Coleri, Sinem/O-9829-2014 | |
dc.authorwosid | Elbir, Ahmet M./X-3731-2019 | |
dc.contributor.author | Elbir, Ahmet M. | |
dc.contributor.author | Coleri, Sinem | |
dc.date.accessioned | 2021-12-01T18:47:57Z | |
dc.date.available | 2021-12-01T18:47:57Z | |
dc.date.issued | 2020 | |
dc.department | [Belirlenecek] | en_US |
dc.description.abstract | Machine learning for hybrid beamforming has been extensively studied by using centralized machine learning (CML) techniques, which require the training of a global model with a large dataset collected from the users. However, the transmission of the whole dataset between the users and the base station (BS) is computationally prohibitive due to limited communication bandwidth and privacy concerns. In this work, we introduce a federated learning (FL) based framework for hybrid beamforming, where the model training is performed at the BS by collecting only the gradients from the users. We design a convolutional neural network, in which the input is the channel data, yielding the analog beamformers at the output. Via numerical simulations, FL is demonstrated to be more tolerant to the imperfections and corruptions in the channel data as well as having less transmission overhead than CML. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [119E350]; Ford Otosan | en_US |
dc.description.sponsorship | Sinem Coleri acknowledges the support of the Scientific and Technological Research Council of Turkey for EU CHISTERA grant 119E350 and Ford Otosan. The associate editor coordinating the review of this letter and approving it for publication was D. Ciuonzo. | en_US |
dc.identifier.doi | 10.1109/LCOMM.2020.3019312 | |
dc.identifier.endpage | 2799 | en_US |
dc.identifier.issn | 1089-7798 | |
dc.identifier.issn | 1558-2558 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.scopus | 2-s2.0-85097797840 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 2795 | en_US |
dc.identifier.uri | https://doi.org/10.1109/LCOMM.2020.3019312 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/10419 | |
dc.identifier.volume | 24 | en_US |
dc.identifier.wos | WOS:000597750400030 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Communications Letters | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Training | en_US |
dc.subject | Array signal processing | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Radio frequency | en_US |
dc.subject | MIMO communication | en_US |
dc.subject | Computational modeling | en_US |
dc.subject | Unmanned aerial vehicles | en_US |
dc.subject | Deep learning | en_US |
dc.subject | federated learning | en_US |
dc.subject | hybrid beamforming | en_US |
dc.subject | massive MIMO | en_US |
dc.subject | Design | en_US |
dc.title | Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 10419.pdf
- Boyut:
- 529.16 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text