Largest Ideals in Leavitt Path Algebras
Yükleniyor...
Dosyalar
Tarih
2020
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Basel Ag
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We identify the largest ideals in Leavitt path algebras: the largest locally left/right artinian (which is the largest semisimple one), the largest locally left/right noetherian without minimal idempotents, the largest exchange, and the largest purely infinite. This last ideal is described as a direct sum of purely infinite simple pieces plus purely infinite non-simple and non-decomposable pieces. The invariance under ring isomorphisms of these ideals is also studied.
Açıklama
Anahtar Kelimeler
Leavitt path algebra, socle, extreme cycle, line point, purely infinite ideal, Cycles, Socle
Kaynak
Mediterranean Journal Of Mathematics
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
17
Sayı
2