Largest Ideals in Leavitt Path Algebras

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Basel Ag

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

We identify the largest ideals in Leavitt path algebras: the largest locally left/right artinian (which is the largest semisimple one), the largest locally left/right noetherian without minimal idempotents, the largest exchange, and the largest purely infinite. This last ideal is described as a direct sum of purely infinite simple pieces plus purely infinite non-simple and non-decomposable pieces. The invariance under ring isomorphisms of these ideals is also studied.

Açıklama

Anahtar Kelimeler

Leavitt path algebra, socle, extreme cycle, line point, purely infinite ideal, Cycles, Socle

Kaynak

Mediterranean Journal Of Mathematics

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

17

Sayı

2

Künye