Thermal design for a communications satellite payload module

dc.authoridDalkilic, Ahmet Selim/0000-0002-5743-3937;
dc.contributor.authorMurat, Yunus
dc.contributor.authorMercan, Hatice
dc.contributor.authorSozbir, Nedim
dc.contributor.authorDalkilic, Ahmet Selim
dc.date.accessioned2025-10-11T20:48:10Z
dc.date.available2025-10-11T20:48:10Z
dc.date.issued2025
dc.departmentDüzce Üniversitesien_US
dc.description.abstractSatellite design and manufacturing studies have become crucial due to their exposure to extreme thermal conditions in outer space. Thermal management systems are necessary to maintain acceptable temperatures for equipment on satellites' structural panels. Accurate modeling, simulation, and testing are necessary to handle high-gradient temperature cycles, considering worst-case scenarios. The study aimed to design, model, and simulate a geostationary communication satellite using finite element method-based software, analyzing thermal modeling, and extraterrestrial satellites. The literature on controlling satellite temperature is limited, with most studies on cube and nano satellites. No scholarly work combines geosynchronous satellite thermal modeling with finite element analysis, which is crucial for understanding satellite thermal dynamics and solving structural and thermal problems in satellite design. A heat pipe network and MLI are placed on the panel, ensuring a homogeneous temperature distribution. In the worst-case scenario, a 2.8 m2 radiator area is used to eliminate heat dissipation from equipment. Analytical investigation is conducted to assess heat rejection capabilities of payload panels, followed by creation and implementation of reduced thermal mathematical models using commercial software. The worst hot-case analysis shows all equipment remains below upper-temperature limits, with heat pipes preventing excessive hot areas. The worst cold-case analysis requires a heater power of 480 W, with a 50% duty ratio aiming for 960 W. The FEM analysis reveals a duty ratio of 55% for panel heaters. Finally, the thermal design of the satellite can be used to maintain the equipment within its temperature limits.en_US
dc.description.sponsorshipEuropean Union [101130406]en_US
dc.description.sponsorshipUKRI Engineering and Physical Sciences Research Council [EP/Y036662/1]en_US
dc.description.sponsorshipThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The last author, Ahmet Selim Dalk & imath;l & imath;cx would like to acknowledge the support from by European Union's Research and Innovation Program Horizon Europe under the Marie Sk1odowska-Curie grant agreement (No. 101130406) and UKRI Engineering and Physical Sciences Research Council (EP/Y036662/1).en_US
dc.identifier.doi10.1177/09544062251346019
dc.identifier.endpage7646en_US
dc.identifier.issn0954-4062
dc.identifier.issn2041-2983
dc.identifier.issue18en_US
dc.identifier.scopus2-s2.0-105010256920en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage7629en_US
dc.identifier.urihttps://doi.org/10.1177/09544062251346019
dc.identifier.urihttps://hdl.handle.net/20.500.12684/21771
dc.identifier.volume239en_US
dc.identifier.wosWOS:001518038400001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofProceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_WOS_20250911
dc.subjectSatellite thermal designen_US
dc.subjectthermal modelingen_US
dc.subjectorbit simulationen_US
dc.subjectfinite element methoden_US
dc.subjectsatellite project phasesen_US
dc.titleThermal design for a communications satellite payload moduleen_US
dc.typeArticleen_US

Dosyalar