An Efficient Deep Learning-based Intrusion Detection System for Internet of Things Networks with Hybrid Feature Reduction and Data Balancing Techniques
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Kaunas Univ Technology
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
With the increasing use of Internet of Things (IoT) technologies, cyber-attacks on IoT devices are also increasing day by day. Detecting attacks on IoT networks before they cause any damage is crucial for ensuring the security of the devices on these networks. In this study, a novel Intrusion Detection System (IDS) was developed for IoT networks. The IoTID20 and BoT-IoT datasets were utilized during the training phase and performance testing of the proposed IDS. A hybrid method combining the Principal Component Analysis (PCA) and the Bat Optimization (BAT) algorithm was proposed for dimensionality reduction on the datasets. The Synthetic Minority Over-Sampling Technique (SMOTE) was used to address the problem of data imbalance in the classes of the datasets. The Convolutional Neural Networks (CNN) model, a deep learning method, was employed for attack classification. The proposed IDS achieved an accuracy rate of 99.97% for the IoTID20 dataset and 99.98% for the BoT-IoT dataset in attack classification. Furthermore, detailed analyses were conducted to determine the effects of the dimensionality reduction and data balancing models on the classification performance of the proposed IDS.
Açıklama
Anahtar Kelimeler
Intrusion detection system, deep learning, IoT networks, feature reduction, data balancing, Bat Algorithm, Smote, Security, Model
Kaynak
Information Technology And Control
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
53
Sayı
1