Somatic drought stress memory affects leaf morpho-physiological traits of plants via epigenetic mechanisms and phytohormonal signalling

dc.contributor.authorAlongi, Franklin
dc.contributor.authorPetek-Petrik, Anja
dc.contributor.authorMukarram, Mohammad
dc.contributor.authorTorun, Hulya
dc.contributor.authorSchuldt, Bernhard
dc.contributor.authorPetrik, Peter
dc.date.accessioned2025-10-11T20:48:27Z
dc.date.available2025-10-11T20:48:27Z
dc.date.issued2025
dc.departmentDüzce Üniversitesien_US
dc.description.abstractDrought stress memory in plants is an adaptive mechanism that enhances resilience to future water stress through physiological and molecular modifications triggered by previous drought events. This review explores somatic drought stress memory within a plant's lifespan, with a specific focus on leaf and stomatal morphology, minimum leaf conductance, photosynthetic efficiency, water-use efficiency, antioxidant capacity, and leaf senescence. We examine how epigenetic mechanisms-such as DNA methylation, histone modifications, and non-coding RNAs-regulate gene expression in coordination with hormonal signalling pathways. Phytohormones, including abscisic acid, jasmonic acid, ethylene, salicylic acid, auxins and cytokinins, are central to these processes, influencing key morphological and physiological adaptations, such as stomatal regulation, cuticle thickness, water retention, and improved water-use efficiency. The review synthesizes current knowledge on the molecular and hormonal networks underlying these adaptations and their impact on leaf architecture and metabolism. Despite advancements, critical gaps remain in identifying the specific genes and pathways involved, understanding the longevity of epigenetic marks, and elucidating the intricate cross-talk between phytohormones during drought stress memory. This review emphasizes the need for integrated-omics approaches to map epigenetic modifications and uncover their roles in developing drought-resistant plants through targeted stress priming strategies.en_US
dc.description.sponsorshipHelmholtz Initiative and Networking fund [W2/W3-156]en_US
dc.description.sponsorshipFA acknowledges funding by the Helmholtz Initiative and Networking fund (W2/W3-156) .en_US
dc.identifier.doi10.1016/j.plgene.2025.100509
dc.identifier.issn2352-4073
dc.identifier.scopus2-s2.0-105001814822en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1016/j.plgene.2025.100509
dc.identifier.urihttps://hdl.handle.net/20.500.12684/21936
dc.identifier.volume42en_US
dc.identifier.wosWOS:001465061100001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofPlant Geneen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_WOS_20250911
dc.subjectAntioxidantsen_US
dc.subjectCuticleen_US
dc.subjectStomataen_US
dc.subjectStress primingen_US
dc.subjectPhotosynthesisen_US
dc.subjectPhytohormonesen_US
dc.subjectWater-use efficiencyen_US
dc.titleSomatic drought stress memory affects leaf morpho-physiological traits of plants via epigenetic mechanisms and phytohormonal signallingen_US
dc.typeArticleen_US

Dosyalar