İstatistiksel Eşleme Metodolojisi ve Rubin Eşleme Yöntemi' nin Sağlıkta Kullanımı ile İlgili Ampirik Bir Değerlendirme

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Amaç: Bu çalışmanın amacı, istatistiksel eşleme yöntemlerini değerlendirmek ve Rubin'in istatistiksel eşleme yöntemini sağlık alanında örnek bir uygulama ile tanıtmaktır. Gereç ve Yöntemler: İstatistiksel eşleme yapay mikro veri setleri oluşturmak için bir yöntem olarak son yıllarda giderek artan bir popülariteye sahiptir. İstatistiksel eşleme, bir araştırmada aynı anda gözlenmemiş (Y,Z) rasgele değişken çiftinden elde edilen taslak bilgi problemini ele almaktadır. Gerçekte Y ve Z birbirinden bağımsız iki farklı araştırmada birbirleri ile örtüşmeyen gözlem birimlerinin oluşturduğu kümelerden elde edilmektedir. Ancak iki araştırmada aynı X değişkeni ortaklaşa gözlenmektedir. İstatistiksel eşleme yöntemleri iki farklı veri kümesinden elde edilen bilginin birleştirilmesini hedeflemektedir. Bulgular: Eşleme işleminde hangi veri setinin alıcı hangisinin donör veri seti olacağı ve kohort değişken kullanmanın söz konusu olup olmayacağı önem arz etmektedir. Çünkü bunlar hem eşlemede hem de eşleme sonucunda hesaplanan uzaklık ölçüsünün değerinin belirlenmesinde belirleyici olmaktadır. Özellikle kohort değişken kullanılması uzaklık ölçüsünün değerini minimum olmaktan uzaklaştırmaktadır. Sonuç: Rubin tarafından önerilen yöntem, diğer yaklaşımlara göre oldukça iyi sonuçlar vermesine rağmen en iyi yöntem veya yöntemler konusunda fikir birliği bulunmamaktadır. En iyi yöntem veya yöntemlere ilişkin görüş birliği bulunmadığından kısıtlı ve kısıtsız yöntemler halen kullanılmaktadır.

Açıklama

Anahtar Kelimeler

veri birleştirme, dosya birleştirme, yapay eşleme, İstatistiksel eşleme, veri karıştırma

Kaynak

Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

11

Sayı

2

Künye