GPU accelerated training of image convolution filter weights using genetic algorithms

dc.contributor.authorAkgün, Devrim
dc.contributor.authorErdoğmuş, Pakize
dc.date.accessioned2020-05-01T12:10:15Z
dc.date.available2020-05-01T12:10:15Z
dc.date.issued2015
dc.departmentDÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.descriptionWOS: 000351296200050en_US
dc.description.abstractGenetic algorithms (GA) provide an efficient method for training filters to find proper weights using a fitness function where the input signal is filtered and compared with the desired output. In the case of image processing applications, the high computational cost of the fitness function that is evaluated repeatedly can cause training time to be relatively long. In this study, a new algorithm, called sub-image blocks based on graphical processing units (GPU), is developed to accelerate the training of mask weights using GA. The method is developed by discussing other alternative design considerations, including direct method (DM), population-based method (PBM), block-based method (BBM), and sub-images-based method (SBM). A comparative performance evaluation of the introduced methods is presented using sequential and other GPUs. Among the discussed designs, SBM provides the best performance by taking advantage of the block shared and thread local memories in GPU. According to execution duration and comparative acceleration graphs, SBM provides approximately 55-90 times more acceleration using GeForce GTX 660 over sequential implementation on a 3.5 GHz processor. (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.identifier.doi10.1016/j.asoc.2015.02.010en_US
dc.identifier.endpage594en_US
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage585en_US
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2015.02.010
dc.identifier.urihttps://hdl.handle.net/20.500.12684/6108
dc.identifier.volume30en_US
dc.identifier.wosWOS:000351296200050en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofApplied Soft Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGPU computingen_US
dc.subjectCUDAen_US
dc.subjectGenetic algorithmsen_US
dc.subjectImage processingen_US
dc.subjectConvolution filteren_US
dc.titleGPU accelerated training of image convolution filter weights using genetic algorithmsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
6108.pdf
Boyut:
3.31 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text