A new version of newton's inequalities for Riemann-Liouville fractional integrals

dc.authorscopusid55577228500en_US
dc.authorscopusid57038541500en_US
dc.authorscopusid57877979700en_US
dc.authorwosidHezenci, Fatih/KFB-5970-2024en_US
dc.authorwosidBUDAK, Hüseyin/CAA-1604-2022en_US
dc.contributor.authorHezenci, Fati
dc.contributor.authorBudak, Hüseyin
dc.contributor.authorKösem, Pinar
dc.date.accessioned2024-08-23T16:04:03Z
dc.date.available2024-08-23T16:04:03Z
dc.date.issued2023en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractWe establish some Newton's type inequalities in the case of differentiable convex functions through the well-known Riemann-Liouville fractional integrals. Furthermore, we give an example with graph and present the validity of the newly obtained inequalities. Finally, we give some inequalities of Riemann-Liouville fractional Newton's type for functions of bounded variation.en_US
dc.identifier.doi10.1216/rmj.2023.53.49
dc.identifier.endpage64en_US
dc.identifier.issn0035-7596
dc.identifier.issn1945-3795
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85162824323en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage49en_US
dc.identifier.urihttps://doi.org/10.1216/rmj.2023.53.49
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14041
dc.identifier.volume53en_US
dc.identifier.wosWOS:000994147900005en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherRocky Mt Math Consortiumen_US
dc.relation.ispartofRocky Mountain Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSimpson's 3 8 formulaen_US
dc.subjectfractional calculusen_US
dc.subjectconvex functionsen_US
dc.subjectHadamard-Type Inequalitiesen_US
dc.subjectConvex-Functionsen_US
dc.subjectSimpsons Typeen_US
dc.titleA new version of newton's inequalities for Riemann-Liouville fractional integralsen_US
dc.typeArticleen_US

Dosyalar