New generalization of midpoint type inequalities for fractional integral
dc.authorscopusid | 57038541500 | |
dc.authorscopusid | 57224590105 | |
dc.contributor.author | Budak, Hüseyin | |
dc.contributor.author | Kapucu, R. | |
dc.date.accessioned | 2021-12-01T18:38:57Z | |
dc.date.available | 2021-12-01T18:38:57Z | |
dc.date.issued | 2021 | |
dc.department | [Belirlenecek] | en_US |
dc.description.abstract | In this paper, we firstly obtain a new generalized identity for Riemann-Liouville fractional integrals. Then, utilizing this equality, we obtain some Midpoint type inequalities for convex and concave functions. We also give several remarks and corollaries as spacial cases. © 2021 Sciendo. All rights reserved. | en_US |
dc.identifier.doi | 10.47743/ANSTIM.2021.00009 | |
dc.identifier.endpage | 128 | en_US |
dc.identifier.issn | 12218421 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85108003912 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 113 | en_US |
dc.identifier.uri | https://doi.org/10.47743/ANSTIM.2021.00009 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/9932 | |
dc.identifier.volume | 67 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Alexandru Ioan Cuza University of Iasi | en_US |
dc.relation.ispartof | Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Concave function | en_US |
dc.subject | Convex function | en_US |
dc.subject | Fractional integral operators | en_US |
dc.subject | Hermite-Hadamard inequality | en_US |
dc.title | New generalization of midpoint type inequalities for fractional integral | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 9932.pdf
- Boyut:
- 409.29 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text