A Fitted Second-Order Difference Method for a Parameterized Problem with Integral Boundary Condition Exhibiting Initial Layer

dc.authoridKUDU, Mustafa/0000-0002-6610-0587
dc.contributor.authorKudu, Mustafa
dc.contributor.authorAmirali, Ilhame
dc.contributor.authorAmiraliyev, Gabil M.
dc.date.accessioned2021-12-01T18:48:04Z
dc.date.available2021-12-01T18:48:04Z
dc.date.issued2021
dc.department[Belirlenecek]en_US
dc.description.abstractIn this paper, the homogeneous type fitted difference scheme for solving singularly perturbed problem depending on a parameter with integral boundary condition is proposed. We prove that the method is O(N(-2)lnN) uniform convergent on Shishkin meshes. Numerical results are also presented.en_US
dc.identifier.doi10.1007/s00009-021-01758-w
dc.identifier.issn1660-5446
dc.identifier.issn1660-5454
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85104399565en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1007/s00009-021-01758-w
dc.identifier.urihttps://hdl.handle.net/20.500.12684/10450
dc.identifier.volume18en_US
dc.identifier.wosWOS:000640776300001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.relation.ispartofMediterranean Journal Of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectParameterized problemen_US
dc.subjectSingular perturbationen_US
dc.subjectUniform convergenceen_US
dc.subjectFinite difference schemeen_US
dc.subjectShishkin meshen_US
dc.subjectIntegral boundary conditionen_US
dc.titleA Fitted Second-Order Difference Method for a Parameterized Problem with Integral Boundary Condition Exhibiting Initial Layeren_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
10450.pdf
Boyut:
549.54 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text