Improved stochastic fractal search algorithm and modified cost function for automatic generation control of interconnected electric power systems

dc.contributor.authorCelik, Emre
dc.date.accessioned2021-12-01T18:47:11Z
dc.date.available2021-12-01T18:47:11Z
dc.date.issued2020
dc.department[Belirlenecek]en_US
dc.description.abstracty An improved stochastic fractal search algorithm (ISFS) and a modified cost function are proposed in this paper to skillfully handle the issue of automatic generation control (AGC) of power systems. Most employed power system models namely two-area non-reheat thermal power system with and without governor dead band nonlinearity, and three-area hydro-thermal power plant with generation rate constraints are considered to be controlled by a PID controller. Then the gains of this controller are optimized with SFS and ISFS individually by minimizing the value of cost function proposed. This function consists in minimizing the integral time absolute error (ITAE) and also the time rates of frequency and tie-line power deviations. After recognizing the supremacy of SFS tuned PID controller over some existing methods in improving settling time and oscillations of frequency and tie-line power deviations, ISFS tuned PID controller is shown to promote the system performance further to compete with some other control schemes of higher degree and complexity available in the literature. This outcome has unveiled the superior tuning ability of ISFS over the original version of SFS. Also, convergence curves of the algorithms are analyzed from which it is observed that the speed of convergence for ISFS is remarkable.en_US
dc.identifier.doi10.1016/j.engappai.2019.103407
dc.identifier.issn0952-1976
dc.identifier.issn1873-6769
dc.identifier.scopus2-s2.0-85083206725en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2019.103407
dc.identifier.urihttps://hdl.handle.net/20.500.12684/10177
dc.identifier.volume88en_US
dc.identifier.wosWOS:000510523600025en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorCelik, Emre
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofEngineering Applications Of Artificial Intelligenceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulti-area power systemen_US
dc.subjectAutomatic generation controlen_US
dc.subjectGovernor dead band nonlinearityen_US
dc.subjectGeneration rate constrainten_US
dc.subjectStochastic fractal searchen_US
dc.subjectPID controlleren_US
dc.subjectOptimizationen_US
dc.subjectLoad-Frequency Controlen_US
dc.subjectDifferential Evolution Algorithmen_US
dc.subjectOptimization Algorithmen_US
dc.subjectPid Controlleren_US
dc.subjectDesignen_US
dc.subjectMatteren_US
dc.subjectStatesen_US
dc.titleImproved stochastic fractal search algorithm and modified cost function for automatic generation control of interconnected electric power systemsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10177.pdf
Size:
2.94 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text