Hermite-Hadamard-type inequalities for the interval-valued approximatelyh-convex functions via generalized fractional integrals

dc.authoridSARIKAYA, Mehmet Zeki/0000-0002-6165-9242
dc.authorwosidZhao, Dafang/AAC-3583-2021
dc.authorwosidSARIKAYA, Mehmet Zeki/ABI-5543-2020
dc.contributor.authorZhao, Dafang
dc.contributor.authorAli, Muhammad Aamir
dc.contributor.authorKashuri, Artion
dc.contributor.authorBudak, Huseyin
dc.contributor.authorSarikaya, Mehmet Zeki
dc.date.accessioned2021-12-01T18:50:36Z
dc.date.available2021-12-01T18:50:36Z
dc.date.issued2020
dc.department[Belirlenecek]en_US
dc.description.abstractIn this paper, we present a new definition of interval-valued convex functions depending on the given function which is called interval-valued approximatelyh-convex functions. We establish some inequalities of Hermite-Hadamard type for a newly defined class of functions by using generalized fractional integrals. Our new inequalities are the extensions of previously obtained results like (D.F. Zhao et al. in J. Inequal. Appl. 2018(1):302,2018and H. Budak et al. in Proc. Am. Math. Soc.,2019). We also discussed some special cases from our main results.en_US
dc.description.sponsorshipSpecial Soft Science Research Projects of Technological Innovation in Hubei Province [2019ADC146]; Fundamental Research Funds for Central UniversitiesFundamental Research Funds for the Central Universities [2019B44914]; Key Projects of Educational Commission of Hubei Province of China [D20192501]; Natural Science Foundation of Jiangsu ProvinceNatural Science Foundation of Jiangsu Province [BK20180500]; National Key Research and Development Program of China [2018YFC1508100]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11971241]en_US
dc.description.sponsorshipThis work was supported in part by Special Soft Science Research Projects of Technological Innovation in Hubei Province (2019ADC146), the Fundamental Research Funds for Central Universities (2019B44914), Key Projects of Educational Commission of Hubei Province of China (D20192501), the Natural Science Foundation of Jiangsu Province (BK20180500), the National Key Research and Development Program of China (2018YFC1508100), and this project is partially supported by the National Natural Science Foundation of China (11971241).en_US
dc.identifier.doi10.1186/s13660-020-02488-5
dc.identifier.issn1029-242X
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85091255066en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1186/s13660-020-02488-5
dc.identifier.urihttps://hdl.handle.net/20.500.12684/10900
dc.identifier.volume2020en_US
dc.identifier.wosWOS:000570709500001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal Of Inequalities And Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHermite-Hadamard-type inequalitiesen_US
dc.subjectInterval-valued functionsen_US
dc.subjectFractional integralsen_US
dc.subjectCalculusen_US
dc.titleHermite-Hadamard-type inequalities for the interval-valued approximatelyh-convex functions via generalized fractional integralsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
10900.pdf
Boyut:
9.37 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text