Hermite-Hadamard-type inequalities for the interval-valued approximatelyh-convex functions via generalized fractional integrals
dc.authorid | SARIKAYA, Mehmet Zeki/0000-0002-6165-9242 | |
dc.authorwosid | Zhao, Dafang/AAC-3583-2021 | |
dc.authorwosid | SARIKAYA, Mehmet Zeki/ABI-5543-2020 | |
dc.contributor.author | Zhao, Dafang | |
dc.contributor.author | Ali, Muhammad Aamir | |
dc.contributor.author | Kashuri, Artion | |
dc.contributor.author | Budak, Huseyin | |
dc.contributor.author | Sarikaya, Mehmet Zeki | |
dc.date.accessioned | 2021-12-01T18:50:36Z | |
dc.date.available | 2021-12-01T18:50:36Z | |
dc.date.issued | 2020 | |
dc.department | [Belirlenecek] | en_US |
dc.description.abstract | In this paper, we present a new definition of interval-valued convex functions depending on the given function which is called interval-valued approximatelyh-convex functions. We establish some inequalities of Hermite-Hadamard type for a newly defined class of functions by using generalized fractional integrals. Our new inequalities are the extensions of previously obtained results like (D.F. Zhao et al. in J. Inequal. Appl. 2018(1):302,2018and H. Budak et al. in Proc. Am. Math. Soc.,2019). We also discussed some special cases from our main results. | en_US |
dc.description.sponsorship | Special Soft Science Research Projects of Technological Innovation in Hubei Province [2019ADC146]; Fundamental Research Funds for Central UniversitiesFundamental Research Funds for the Central Universities [2019B44914]; Key Projects of Educational Commission of Hubei Province of China [D20192501]; Natural Science Foundation of Jiangsu ProvinceNatural Science Foundation of Jiangsu Province [BK20180500]; National Key Research and Development Program of China [2018YFC1508100]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11971241] | en_US |
dc.description.sponsorship | This work was supported in part by Special Soft Science Research Projects of Technological Innovation in Hubei Province (2019ADC146), the Fundamental Research Funds for Central Universities (2019B44914), Key Projects of Educational Commission of Hubei Province of China (D20192501), the Natural Science Foundation of Jiangsu Province (BK20180500), the National Key Research and Development Program of China (2018YFC1508100), and this project is partially supported by the National Natural Science Foundation of China (11971241). | en_US |
dc.identifier.doi | 10.1186/s13660-020-02488-5 | |
dc.identifier.issn | 1029-242X | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85091255066 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1186/s13660-020-02488-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/10900 | |
dc.identifier.volume | 2020 | en_US |
dc.identifier.wos | WOS:000570709500001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Journal Of Inequalities And Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hermite-Hadamard-type inequalities | en_US |
dc.subject | Interval-valued functions | en_US |
dc.subject | Fractional integrals | en_US |
dc.subject | Calculus | en_US |
dc.title | Hermite-Hadamard-type inequalities for the interval-valued approximatelyh-convex functions via generalized fractional integrals | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 10900.pdf
- Boyut:
- 9.37 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text