CNN-based Gender Prediction in Uncontrolled Environments

dc.contributor.authorGüneş, Engin
dc.contributor.authorYıldız, Kazım
dc.contributor.authorBas, Anıl
dc.date.accessioned2023-04-10T20:26:02Z
dc.date.available2023-04-10T20:26:02Z
dc.date.issued2021
dc.departmentRektörlük, Rektörlüğe Bağlı Birimler, Düzce Üniversitesi Dergilerien_US
dc.description.abstractWith the increasing amount of data produced and collected, the use of artificial intelligence technologies has become inevitable. By using deep learning techniques from these technologies, high performance can be achieved in tasks such as classification and face analysis in the fields of image processing and computer vision. In this study, Convolutional Neural Networks (CNN), one of the deep learning algorithms, was used. The model created with this algorithm was trained with facial images and gender prediction was made. As a result of the experiments, 93.71% success rate was achieved on the VGGFace2 data set and 85.52% success rate on the Adience data set. The aim of the study is to classify low-resolution images with high accuracy.en_US
dc.identifier.doi10.29130/dubited.763427
dc.identifier.endpage898en_US
dc.identifier.issn2148-2446
dc.identifier.issue2en_US
dc.identifier.startpage890en_US
dc.identifier.trdizinid497257en_US
dc.identifier.urihttp://doi.org/10.29130/dubited.763427
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/497257
dc.identifier.urihttps://hdl.handle.net/20.500.12684/11756
dc.identifier.volume9en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofDüzce Üniversitesi Bilim ve Teknoloji Dergisi
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleCNN-based Gender Prediction in Uncontrolled Environmentsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
11756.pdf
Boyut:
647.38 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text