Fractional Milne-type inequalities for twice differentiable functions
dc.authorid | Almoneef, Areej/0000-0001-7041-3730; | en_US |
dc.authorscopusid | 57729815600 | en_US |
dc.authorscopusid | 55655209500 | en_US |
dc.authorscopusid | 57038541500 | en_US |
dc.authorscopusid | 57197125025 | en_US |
dc.authorwosid | Almoneef, Areej/GRJ-3845-2022 | en_US |
dc.authorwosid | BUDAK, Hüseyin/CAA-1604-2022 | en_US |
dc.contributor.author | Almoneef, Areej A. | |
dc.contributor.author | Hyder, Abd-Allah | |
dc.contributor.author | Budak, Huseyin | |
dc.contributor.author | Barakat, Mohamed A. | |
dc.date.accessioned | 2024-08-23T16:03:29Z | |
dc.date.available | 2024-08-23T16:03:29Z | |
dc.date.issued | 2024 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | In this study, a specific identity was derived for functions that possess two continuous derivatives. Through the utilization of this identity and Riemann-Liouville fractional integrals, several fractional Milne-type inequalities were established for functions whose second derivatives inside the absolute value are convex. Additionally, an example and a graphical representation are included to clarify the core findings of our research. | en_US |
dc.description.sponsorship | Deanship of Scientific Research at King Khalid University [RGP.2/82/45]; Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia [PNURSP2024R337] | en_US |
dc.description.sponsorship | The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant (RGP.2/82/45) . The authors would like to acknowledge the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R337) , Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. | en_US |
dc.identifier.doi | 10.3934/math.2024965 | |
dc.identifier.endpage | 19785 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopus | 2-s2.0-85196113124 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 19771 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.2024965 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/13778 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:001249078500004 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Inst Mathematical Sciences-Aims | en_US |
dc.relation.ispartof | Aims Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Milne-type inequalities | en_US |
dc.subject | fractional integrals | en_US |
dc.subject | convexity | en_US |
dc.subject | differentiable functions | en_US |
dc.subject | Simpsons Type | en_US |
dc.title | Fractional Milne-type inequalities for twice differentiable functions | en_US |
dc.type | Article | en_US |